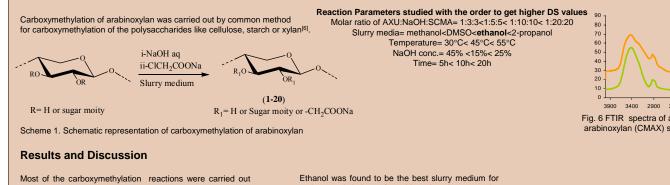

ISOLATION AND CARBOXYMETHYLATION OF ISPAGHULA SEED HUSK GEL POLYSACCHARIDE

Shazia Saghir^{1,2}, Mohammad Saeed Iqbal¹, Andreas Koschella², Thomas Heinze²


- ¹ Dept. Chemistry, University of Sargodha, Sargodha, Pakistan
- ² Centre of Excellence for Polysaccharide Research, Friedrich Schiller University of Jena, Germany

Europeen Palgiaccheride Network Of Excellence

Carboxymethylation of arabinoxylan

easy work up.

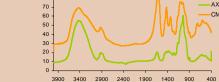
carboxymethylation of arabinoxylan because the

higher DS values were obtained combined with an

Products with lower DS values have highe

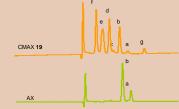
substitution at O-2 while products with higher DS values had substitution on other positions also (O-3,

O-5) resulting in comparative lower DS at O-2.


Most of the carboxymethylation reactions were carried out under heterogeneous conditions except for sample 20 (DS_{CN} 0.24), where DMSO was used as solvent and reaction was carried out in homogeneous phase. The DS of the carboxymethyl groups was determined after

hydrolytic chain degradation by $\mathsf{HPLC}^{[7]}$ and $^1\mathsf{H}$ NMR spectroscopy[8]. Change of reaction parameters had a distinct influence on

the total DS and functinalization pattern of carboxymethyl arabinoxylan (CMAX).


Tab. 2 Degree of substitution (DS) of carboxymethyl arabinoxylan (CMAX) obtained under different reaction conditions.

Molar ratio AXU:SMCA:NaOH	Slurry medium	Time h	NaOH aq.(%)	Sample number	DS _{HPLC}	DS 1 _{H NMR}		
						ΣDS	0-2	O-3*
1:5:5	Methanol	5	15	1	0.14	0.13	0.10	0.03
1:7:7	Methanol	5	15	2	0.33	0.31	0.22	0.09
1:10:10	Methanol	5	15	3	0.43	0.37	0.24	0.13
1:20:20	Methanol	5	15	4	0.48	0.38	0.20	0.18
1:20:20	Methanol	5	25	5	0.61	0.50	0.31	0.19
1:3:3	Methanol	5	45	6	0.08	0.07	0.05	0.02
1:5:5	Methanol	5	45	7	0.17	0.15	0.09	0.06
1:5:5	Methanol	5	25	8	0.27	0.23	0.14	0.09
1:3:3	Methanol	5	25	9	0.12	0.10	0.06	0.04
1:3:3	Methanol	10	25	10	0.16	0.14	0.11	0.03
1:3:3	Ethanol	10	25	11	1.72	1.12	0.52	0.60
1:3:3	Ethanol	20	25	12	1.81	1.33	0.59	0.74
1:3:3	Ethanol	5	25	13	1.18	0.91	0.42	0.49
1:3:3	Ethanol	5	15	14	1.07	0.74	0.35	0.39
1:3:3	Ethanol	5	15	15ª	0.73	0.51	0.25	0.26
1:3:3	Ethanol	5	15	16 ^b	0.26	0.20	0.12	0.08
1:5:5	Ethanol	5	15	17	1.37	1.14	0.45	0.69
1:10:10	Ethanol	5	15	18	1.47	1.34	0.54	0.80
1:3:3	2-Propanol	5	25	19	1.33	1.23	0.44	0.79
1:3:3	DMSO	5	25	20	0.24	0.20	0.12	0.08

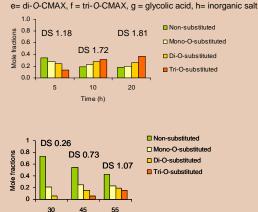

ed husk gel polysaccharide.

Fig. 6 FTIR spectra of arabinoxylan (AX) and carboxymethyl arabinoxylan (CMAX) sample 13. DS=1.18

Retention time (min)

Fig. 7 HPL chromatograms of arabinoxylan (AX) and carboxymethy arabinoxylan (CMAX **19**) after complete chain degradation with HOI_4 . a = arabinose, b = xylose, c= mono-O-CMA, d= mono-O-CMX,

Temperature (°C)

101.3 81.4 74.3 77.3 63.5 Sample DS alβ, x1β" 2-β-O-CH2x1α Glycolic acid al 5-O-CH₂ Glycolic acid 3-O-CH2-2α-O-CH2

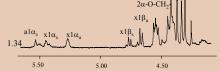


Fig. 9 ¹H NMR spectra of carboxymethyl arabinoxylan (CMAX) with different degree of substitution after hydrolysis in 25% $\rm D_2SO_4.~s$ means substituted in neighbored position 2, u means unsubstituted in neighbored position 2, a means arabinose, x means xvlose

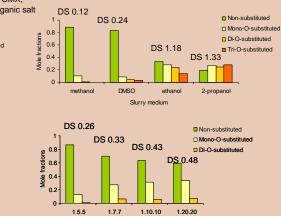


Fig. 8 Effect of change in reaction parameters on the total DS and mole fractions of CMAX. Reactions are carried out by

keeping one parameter variable and other constant. (see Table 2.).

a reaction at 45°C, ^b at 30°C, * O-3 representing substitution at all other expected positions except position 2

Conclusion

- Arabinoxylan gel with DP 2760 was isolated from Ispaghula seed husk by alkali -extraction with a yield of 45% of the weight of husk.
- Ultrasonic degradation of arabinoxylan for 28 h yielded a product with DP
- HPLC analysis showed the presence of 74.8% xylose and 23.2% arabinose, along with 0.8% rhamnose and 1.2% galactose relative to total sugar content
- Polymer was thermally stable up to 250°C.
- Carboxymethylation was carried out under different reaction conditions and maximum DS was found 1.81
- A distinct influence of the slurry medium on the DS and functionalization patterns was found. The DS increases in the order 2-propanol>ethanol>DMSO>methanol while keeping all other parameters constant.
- The highest DS could be realized applying ethanol as slurry medium, 25% aqueous reaction temperature of 55°C within 20 h, and higher molar ratio of SMCA and NaOH to anhydro sugar unit.
- · CMAX with tri-O-substituted mole fraction indicated presence of three free OH groups in branched pentose sugars.
- The products with higher DS values were found with higher tri-O-substituted mole fraction as compared to mono-O-substituted and di-O-substituted mole fractions
- Carboxymethyl arabinoxylan is water soluble starting at DS of 0.33.
- The rheological properties of water soluble carboxymethyl arabinoxylan will be studied regarding their application as thickening- and surface active agents for pharmaceutical applications

 Comparative studies of arabinoxylan and water swelling carboxymethyl arabinoxylan as controlled drug delivery devices will be carried out

References

- 1. Food and Drug Administration. Food labeling, general provisions. Nutrition labeling. Label format. Nutrition content claims. Ingredient labeling, state and local requirements. Exemptions, final rules. Fed. Reg. 58:2303, (1993)
- 2. Department of Agriculture. Food labeling, general provisions. Nutrition labeling. Label format. Nutrition content claims. Ingredient labeling, state and local requirements. Exemptions, final rules. Fed. Reg. 58:631, (1993)
- 3. Gohel, M. C., Amin, A. F., Chhabaria, M. T., Panchal, M. K., & Lalwani, A. N. (2000). Pharm. Dev. Technol., 5, 375.
- 4. Gohel, M.C., Patel, M.M., Amin, A.F. (2003). Drug Dev. Ind. Pharm., 29, 565.
- 5. Fischer, M. H., Nanxiong Yu., Gray, G. R., Ralph, J., Anderson, L., Marlett, J. A. (2004). Carbohydr. Res., 339, 2009.
- 6. Petzold, K., Schwikal, K., Heinze, T. (2006). *Carbohydr. Polym.*, 64,292 7. Heinze, T., Erler, U., Nehls, I., Klemm, D. (1994). *Angew. Makromol. Chem.*, 215, 93.
- 8. Heinze, T., Pfeiffer, K., Liebert, T., Heinze, U. (1999). Starch/Stärke, 51, 11.

Acknowledgements

The fellowship for Shazia Saghir by Higher Education Commission (HEC) of Pakistan is gratefully acknowledged. The authors wish to thank Dr. B. Saake (Hamburg, Germany) for sugar analysis.

Contacts:

Thomas Heinze Center of Excellence for Polysaccharide Research Friedrich Schliller University of Jena Humboldstrasse 10 D-07743 Jena, Germany Phone: ++49 3641 9 48270 Fax: ++49 3641 9 48272 Fax: ++49 3641 9 48272 E-mail: Thomas.Heinze@uni-jena.de www.uni-jena.de/chemie/institute/oc/heinze

Shazia Saghir E-mail: chem2000v@yahoo.com