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Abstract: Rational schemes for shape preservation of monotone data both in 2D and 3D setups have been developed.
C! rational cubic and partially blended bicubic functions are employed for this purpose. Monotonicity is achieved by
extracting constraints on parameters involved in the description of these rational functions. Monotone curves and surfaces
have been obtained, which provide evidence that the algorithm used fits most types of monotone data and produces

visually pleasing results.
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1. Introduction

Construction of curves and surfaces in the digital age is at the heart of many scientific fields such as computer-
aided geometric design (CAGD), computer graphics (CG), and computer-aided design (CAD). These applied
fields integrate concepts from linear algebra, differential geometry, visualization, and numerical methods, all
implemented in software. Curve and surface drawing techniques have given architects a cutting edge over the
conventional drafting equipment and optimized the probability of turning their visions into practice, displaying

them on computer screens in incredibly short spans of time. Three categories of data, i.e. monotonicity,

positivity, and convexity, are often dominant in the majority of these applications. Rise in cholesterol level
in the blood due to consuming food high in saturated fat, chlorofluorocarbon amounts in the depletion of the
ozone layer, and uric acid levels in gout patients are some variables that always show monotonic pattern. Height
and age of a person, number of computers in a computer laboratory, and population in a specific area are some
real-life examples of positive data. Exponential and power functions, negative entropy, and area enclosed by a
semicircle in the lower half plane are a few examples of curves that show convex behavior.

Mathematical models of the datasets exhibiting one of these three properties have ensured their signifi-
cance in the fields of engineering, natural sciences, and social sciences. Construction of these models can assist
in the study of effects of various constituents and in estimating the behavior of the system as a whole. For
this purpose, the intrinsic shape of the data must be retained to avoid misinterpretation of the information.
Standard methods of spline functions do not retain inherited characteristics of the data. Hence, by introducing
some parameters into the spline structure, various characteristics of the data, including convexity, monotonicity,
and positivity, can be conserved. Moreover, the number of parameters can be increased to pull the curve or

surface towards the intrinsic shape of the data, keeping the smoothness of the results intact.
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Spline interpolating rational functions are very helpful in the envisioning of shaped data because they
furnish smooth and captivating views of the data under consideration. Much notable work has been done
previously to overcome this difficulty [1-10]. Kvasov [3] created an algorithm for interpolation by means of
weighted cubic spline functions that keep the monotone and convex shape of discrete sets of data. Ibraheem
et al. [4] evolved rational cubic and bicubic trigonometric methodologies to maintain the monotonicity of
data in two and three dimensions. Constraints were attained on parameters of rational cubic and bicubic
trigonometric functions. In [5], the authors did work on conservation of shaped data by evolving a C* rational
cubic spline that formed a convex interpolant for given convex data. Sarfraz et al. [1] developed a piecewise
rational cubic function of order O(h3) to visualize monotone data. Hussain et al. [9] designed a control point
state of quadratic trigonometric functions that fulfill each of the properties of Bezier functions. Floater and
Pena [7] considered and explained the types of monotonicity preservation of systems of bivariate function on
a triangle. Sarfraz et al. [2] illustrated a rational cubic function having two parameters for the envisioning of
positive-shaped data. The focus of the work was to present a smooth view of data. Sarfraz et al. [10] created
a novel technique of curve interpolation. A piecewise rational cubic function encompassing two parameters
was considered and their influence on the shape of the curve was scrutinized. Hussain et al. [6] extended
the GO! quadratic trigonometric functions in [9] to GC! biquadratic trigonometric functions that confined
four free parameters. Smooth and eye-catching monotone and positive surfaces were attained by developing
limits on free parameters. The prime objective of this research is to acquire data-dependent constraints on
parameters to retain monotonicity. For this purpose, rational cubic and bicubic functions by the authors in
[2] are utilized. Monotonicity-preserving constraints for curve and surface data are developed in Section 3 and
Section 4, respectively. Section 5 provides the implementation of a rational scheme developed on 2D and 3D
datasets. The corresponding numerical results of values of derivatives and parameters are calculated using

MATLAB and are shown in Section 6, followed by conclusions in Section 7.

2. Rational cubic and bicubic partially blended functions

Let us presume that (g, f;) , 0 <1 < n, is the dataset supposed to be delineated on the interval [a, ] in such
a way that a = g9 < g1 < e3 < --- <&, = b. A rational cubic piecewise defined function possessing two free

parameters defined in all the subintervals I; = [g;,£,41],0 < ¢ < n — 1, is provided below:

Si(e) = ==, (1)
where
pi(®) = 0ifi(1 — @)% + {0, f; + hidid; + 2f;}0(1 — @)?

+{&ifir1 — hi&idipr + 2fi01 P21 — @) + & fi11 D%,

qi(®) = 6;(1 — @) +20(1 — @) + &2,

and ® = S5 h; = g;41 — &;. The function provided in Eq. (1) holds C! continuity if the following attributes

are satisfied:
Si(é?i) = fi,Si(Ei—i-l) = fz'+1,

S’(l)(&') = di7 Si(l)(ffiﬂ) = diJrl-

7

(2)
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In Eq. (2), S expresses the derivation with respect to & whereas d; symbolizes the estimated values of

derivatives at knots ;. The estimated derivative values may be already provided or estimated using some

appropriate strategy. In this paper, derivatives are calculated using the geometric mean method detailed below:

. 0 Ais1=0,A; =0,
di = ; hi_1
Al A i=1,2,...,n—1
0 Ay =0,A3, =0,
ArfgH]" otherwise.
3,1
. 0 An—l =0, An,n—2 =0,
dy, = . A Zn_l
n—1 n—2 .
A"_l[An,n_Q} otherwise.

E€3—€1

Here, A; = 7f77+}1;fi7i =0,1,2,...,n—1 and Az, = Lamh A= g"fg” EEr—

Similarly, for 3D data these are defined as follows:

0 Ai1;=0,4;; =0,
€ = hy hi_1
2,7 +h +hy .
Al a5 A rioith otherwise.
5 0 A1 =0,A3,;=0,
e __ hy
M= [= i ]h2 otherwise
1,5 ABI K .
5 0 An—Lj =0, An(an),j =0
e _ = hp_1
n,j “ Ap_1. 1hn—2 .
Ay otherwise.
’ An(n 2),j
o 3 0 5 ZfAi’j_l = 0, Ai,j = 0,
Flj — _hy h771
’ +h +h .
A, ; - ’A 7 ! otherwise
L 0o Aj1=0,A;3=0
F. = o hy
1,1 < Aj11F% .
A otherwise.
A 31
5 0 } Ai,m =0, Ai,m(m—Q) =0,
Ff e o P — 1
i,m < A, Form— .
A | x——] 2 otherwise.
Ai,?n(vn72)

F3‘_7—Fv'1,_7‘ A _ Fn,j_Fn—2,j A . _ Fi,3—Fi,1 A _ By —F; m—2
Here, A31] e3—e1 An(an),j T epn——tn_2 A2,31 = T fa-f1 Az,m(mf2) - fm—fm PR
Ao Fmg=Fy A Figni=Fiy o s
A"j = > ; Ai,j = ;Lj . V’L,j .
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Here, a fact worth mentioning is that for §; = & = 1 in the interval [e;,€;11], the rational cubic function

in Eq. (1) alters to the basic cubic Hermite spline. The rational cubic piecewise function supplied in Eq. (1) is
advanced to a rational bicubic function delineated over a given set of 3D data points (e;, f;, ﬁ‘l j) where 0 <i<n
and 0 < j < m on rectangular mesh D= [€0s€n] X [fo, fm]- Let pra=e9<e1 <eg<ez<...<g,= b
be the partitioning of [a,b] and p: ¢ = fo < f1 < fo < f3 < ... < fm = d be the partitioning of [¢,d]. We

elucidate a bicubic partially blended rational function defined over rectangular patch [e;,,41] X [f;, fi+1] as:
S(e, f) = —ABCT. (3)

Here,

0 S(€7fj) S(E’fjJrl)
B= S(e,f) S(eis f5) S(ei, fi+1)
S(eiv1, f)  S(eivr, f5)  S(eiv1, fi+1)

and A and C are row matrices given as:
A=[-1 ao(®) a1(®)],

C=[-1 co(¥) er(P)],

where ag(®) = (1 — ®)2(1 + 28),a1(®) = B2(3 — 28), co(T) = (1 — V)2(1 + 2T),c1 (V) = U2(3 — 20).
Furthermore, ® = 7= and ¥ = “gjff‘) and 0<®<1and 0< W <1, hy =eip1 — i, hy = fip1 — fj-

Four rational cubic functions S(e, f;), S(e, fj+1), S(es, f), S(gi+1, f) are acquired just like the one in Eq. (1)

delineated on the boundary of rectangular patch [e;, g,41] X [fj, fj+1] as:

Jo(1 = ®)3 + J1®(1 — ®)2 + J,%(1 — &) + J383)

S E?f’ = ) 4
( J) 91(‘13) ( )
and values corresponding to J;,7 =0,1,2,3 are:
Jo=0i3F i = 85 Fig + hidi s B +2F5 5, Jo = & iy — & Fep jhi +2F5 5 5 Js = & gFiy.
@1 (P) = 0;;(1 — @)* + B(1 — @) + & ;D%
In similar fashion,
Ko(1— )3 + K 0(1 — )2 + Ka®2(1 — B) + K@
S(e, fi+1) = ; (5)
a2(P)
where the values of K;,i =0,1,2,3 are:
Ko = 6ij1 57501, K1 = 8 By + hidi g FY oy + 28511,
Ko =& jp1Fiprjm1 — gi,j+1pis)j+1hi +2F; 1 41, K = & 1 Fin jats
22(P) = 0ij+1(1 = @)* + B(1 — @) + & 511 D%.
Likewise,
Lo(1 — W) 4 Liw(1 — W)2 4 LyW2(1 — ) 4 Ly 0)
S(ei, f) = (6)

q3(¥) 7

and values corresponding to L;,t =0,1,2,3 are:
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Lo =0i;Fij, Ly = 0;;Fy j + hjdijir Y, + 2, 5, Ly =& Fy joa — & F), by + 2F; ji0, Ly = & 3 F
g3(V) = 0i 11 (1= 0P+ U(1 = 0) 4§ ;1,92
In like manner,
Mo(1 — )3 + MyT(1 — U)? + MpT%(1 — U) + M3 03
q4(¥) ’

S(5i+17f):

where the values corresponding to M;,i = 0,1,2,3 are:

Mo = 8i41,5Fiir5s My = bin g Fin g + Rybinn Bl + 2Fi g,

My =& y1Fip1 501 — €i+1,jFi{kl,j+1ﬁj +2F; 141, Ms = &1 i g g,
(V) =6;01,;(1 =)+ (1 — W)+ &4q ;02

3. Monotone curve model

Assume (g4, f;) to be the provided dataset where 0 < i < n . Suppose f;,i = 0,1,2,...,n is a monotonic
dataset, i.e. f; < fiy1. Also,

hi = &i+1 — &4, Az = 7fl+é:fl Z 0.

Further, let us assume that czi, 0 <7 < n, symbolizes the estimated derivative values at the points ;,0 < i < n.

Also, the vital monotonicity condition dl > 0,1 <i < n is satisfied. The free parameters within the interval

[ei,€ir1] are 6; and &. The piecewise rational cubic function [2] is monotonically increasing if and only if
SZ-(l)(E) > 0Ve € [g;,€i41]-
&1(1 — @)4 + dgq)(l — (I))S + d3¢’2<1 — <I)>2 + d4q)3(1 - (I)) + d5¢’4

(W) =
S (E) L@ ! ®)

where d;,1 <7 <5 are given as:

iy = 02d;, do = 26,68 +40;8;—20;&d; 1, s = 40:E6 8 +26; A +28 A +4A; = 6:idi 11 —26;di 11 —26;d;—0::d;
dg = 26,60 + 46 A; — 26:6d;, s = i .

Now SZ-(I)(E) >0, iff ¢; > 0,1 < j < 5 in all of the subintervals [e;,e,41]. Consequently, the following

constraints have been derived on free parameters:

) 247, ) 2A, . 2(d; —A;)
& > d.i+1*Ai’67' > di*Ai’gl > 4A;—d;—dit1 °

The above discussion can be summarized as follows:

Theorem 1 The rational cubic piecewise function in [2] retains monotonicity if in each subinterval [g;,€;41],0 <
1<n—1,6 and & fulfill:

- IA: -
8=\ + '\ >0,
di — A
2A,; 2(d; — A,
& = 0; + max{0, = - ( ) b0 > 0.

div1 — Ay 4A; —d; — diq
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4. Monotone surface model

Assume the given set of 3D data points (5¢,fj,15'¢7j) where 0 <7 < n and 0 < 57 < m on rectangular mesh
D = [e0,en] X [fo, fm] such that the following conditions are met:

Fi,j < F’i+17j, Fv‘i,j < F‘i,j-‘rl; F‘ij >0, F‘Z{j > 0, and Aiﬁ' >0, A@j > 0,

Fiyrj=Fiy R _ Fiji—Fi
T Big = T

7

where Ai,j =
3

For the surface patch in [2] to be monotone, we only need to establish that the boundary curves
S(e, f;),S(e, fi+1),S(&i, f),andS(g;41, f) are all monotone. First consider S(e, f;). It is known that S(e, f;)

is surely monotone if Si(l)(s, fi) > 0.

Ag(1 = ®)* + A, 0(1 — D)3 + Ay®%(1 — 3)2 + A303(1 — ) + A,d%)
[q1(®)]? '

Si(l)(evfj) = (9)

The values corresponding to A;,7=0,1,2,3,4 are:

Ao = 62, F5;, Ay =20, 36 A 5 + 46, ;A 5 — 26 36 5 Fyy

1,5 1,50
Ag =46 36 jA; 5 + 26, ;A j + 26 ;A 5 + ARG j — 6, ;& Fe j — 260 FE 5 — 200, F; — 66 FE 5,
Ag =26, ;& A j + 48 5N — 20, 36 FE Ay = E2,F8, .

When Si(l)(s,fj) >0, all 4;,%=1,2,3, are necessarily positive. Thus, A; > 0,45 > 0, and A3 > 0 yield the

following constraints on §; ; and &; ;:

A'Lj 2( 1] 77)
d;,; > max{0, Fr, oK, 4K, —rT,—F%, } &:,; > max{0

, W} Continuing in a similar fashion, S(e, fj+1)

is said to be monotone if Si(l)(s, fi+1) > 0.

Bo(1 — ®)* + Bi®(1 — ) + Byd2(1 — 0)2 + B3®3(1 — &) + Byd4)
[g2(®)]? '

S (e, fis) = (10)

Here,

By = 5”4_1 it B1= 20; j11&i 1D jy1 40 18 j 11 — 25i,j+1€i,j+1Fz+17J+17

By = 46 j1& ji1 i ju1 + 2000180 i + 26 10 ju1 + 4N — 6i,j+1£i,j+1Fl+1 41— 26 i1 Ff g1 —
20; j-‘rlF J+1 T 9; J+1§1 J+1Fz J+1o

B; = 261 j+1£l,]+1A J+1 + 452,j+1Az j+1 = 25% ]+1§’L,j+1 i,j4+11 By = g?,j+1ﬁ‘ia+17j+1-

SZ- (s,fj+1) > 0 where B;,i =0,1,2,3,4 are essentially positive. Thus, B; > 0, By > 0, and B3 > 0 yield the

following constraints on §; j+1 and & jy1:

28, 541 (F J+1_A7/ i+1) 28 441
& j+1 > max{0 - 2 0ij+1 > max{0, s——=&2—1}.
J { ’ FE+1 j+1_Aivj+1 ’ 4A7 J+1T F@ j+1 FiE+1,j+1 } ’ J { ’ Fqis.j+1_Ai,.7‘+1 }

Likewise, S(e;, f) is monotone if S’i( )(si,f) > 0.

Co(1 = W)+ C1U(1 — W)3 + CoU2(1 — )2 + C303(1 — W) + C,¥?)

S e ) = s ) |

where

Co =6} C1 = 20 ;€ ;8 5 + 40 A j — 28, ;6 ,FY

0,J ZJ7
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Cy = 46,361 385 + 26500 5 + 261580 5 + 48, 5 = 6 me
C3 = 20; ;& jAi j +4& ;A ; — 20 ;6 F,, Co = E,F/, .

Similarly, for S’i(l)(ai , f) >0, C;,i =0,1,2,3,4 should necessarily be positive. Here, C; > 0,Cy > 0, and

P < nf S T
i1 — 2005 0 — 2005 F 5 — 6058 5 F S

C3 > 0 yield the following constraints on Si,j and g},j :

X, ; 2(F]
, sz f— u_(__lzf uf) } &.; > max{0, 267]} Lastly, S(gi+1,f) is considered to be
Fl R 4, ;—F] - F;

i,

8;; > max{0

monotone if Si( (€ix1, f) > 0.

Do(1— W)* + DyU(1 — )3 + DyW2(1 — 0)2 + D3W3(1 — W) + D04

SZ»(I)(Eth) = [qa (V)]

Here we have:

Dy = 5,'2+17j1:ﬂ£17j, D, = 25i+1,j€i+1,in+1,j + 4(§i+1,in+1,j - 2Si+1,jgi+1,jﬁ’1£_17j+17

Dy = 45i+1,j§_i+1,j5i+1,j + 2gi+1,in+1,j + 2£_i+1,in+1,j + 4Ai+1,j - Si+1,jgi+1,jﬁ‘if_~_17j+1 - 2£_i+1,jﬁ‘i]:_17j+1 -
25i+1,jﬁ‘i{i-1,j - 5i+1,j§_i+1,jﬁ1i£-1,j ’

D3 = 2641 5€i+1,j 8415 + 4641, 8i415 — 25i+1,jgi+1,jpi{rl,j’ Dy = 51'2+1,j15¢i1,j~

Furthermore, forSi(l)(EiH, f)>0, D;;i=0,1,2,3,4 essentially is positive. From D; > 0, Dy > 0, and D3 > 0,

we procure the following constraints on free parameters:

< 2841 2F —Aijay) 2A
0541, > max{0 L] - =Ly &i41. > max{0 it The following theorem
Y { ’ sz+1 gDy 4l Fz+1 J Ff+m'+ } T { ’ Ff g AL 7}

summarize the whole of the above argument:

Theorem 2 The bicubic partially blended rational function supplied in [2] provides the envisaging of monotone
data in the form of a monotone surface if in rectangular mesh I;; = [e;,€i41] X [f}, fj+1], the constraints provided
as follows are satisfied by the free parameters:
247, 2(F5 ;=4 )

= max , g2 . .
6 B CZ J + & {0’ F1€+1 A?,J‘ ’ 4Ai,.7‘_Ff,j_FiE+1,j }, CZ’J - 07
57:;.7 d" \J + maX{O7 FE _ X }’ di:j > 07
, 2A,; +1 , .
Oigr1 = eij +max{0, 2K}, eiy > 0;
2A; 41 (Fz"s,jJrl*Ai-,jJrl)

&ij+1 = gij + max{0, = }o9is > 05

s - S <
i+1,j+1 Ai,jJrl 4Ai,j+17FiE,j+17Fi5+l,j+1

. 24, 2F -4 ) L )
0i,j = Ji.j + max{0, BT AL Ik, ,_Fifj_ﬁvifj+l}?]i,j > 0;

&j= k;” + max{0, 7(26’ J? },k;” > 0;

N g 2841 208, —Aii1 ) ,

Oir1.+ = l; + + max{0, - 41, - o li; >0;
g 7 { ’ Fif+1 j+1_Ai+1,J'7 4Ai+1 i~ Fl+1 i Flal,jJrl} J

‘. ) 2841,

&it1,; = mi; + max{0, T2 .y } m;; > 0.
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5. Numerical examples

Monotonicity-conserving rational schemes developed in Section 3 and Section 4 have been applied on 2D
monotone datasets (Table 1 and Table 2) and 3D monotone datasets (Table 3 and Table 4), corresponding
to which monotone curves and surfaces are obtained as shown in Figure 1, Figure 2, Figure 3, and Figure 4.
The tz and fz views of the monotone surface generated from the dataset in Table 3 are demonstrated in Figure
5 and Figure 6, respectively. Similarly, Figure 7 and Figure 8 represent tz and fz views of the monotone surface
produced from the dataset in Table4.

Table 1. A 2D monotone dataset, 1.

t 111234 5 [6 |7
filolslol13]17]20]21

Table 2. A 2D monotone dataset, II.

t; 1213657 [75
fl2]317 [23]29

Table 3. A 3D monotonic dataset generated by the function F'(e, f) = /e + J + 0.005.

f/e | 0.1 1.49 2.52 3.49 3.5

0.1 0.4528 | 1.2629 | 1.6202 | 1.8960 | 1.8987
1.49 | 1.2629 | 1.7277 | 2.0037 | 2.2327 | 2.2349
2.52 | 1.6202 | 2.0037 | 2.2461 | 2.4525 | 2.4546
3.49 | 1.8960 | 2.2327 | 2.4525 | 2.6429 | 2.6448
3.5 1.8987 | 2.2349 | 2.4546 | 2.6448 | 2.6467

Table 4. A 3D monotonic dataset generated by the function F(e, f) = exp(e®°° + f0-07).

fle 2.5 11.10 | 25.65

2.5 0.4528 | 1.2629 | 1.6202
11.10 | 1.2629 | 1.7277 | 2.0037
25.65 | 1.6202 | 2.0037 | 2.2461

6. Numerical values
The values of the parameters and the derivatives involved in the proposed algorithm have been calculated using
MATLAB software and are presented in Table 5, Table 6, Table 7, and Table 8.

7. Conclusion

A C? rational cubic interpolating scheme put forward by the authors in [2] encompassing two parameters has

been used for the modeling of monotone two- and three-dimensional data evolving as an outcome of certain
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y-axis

X-axis X-axis

Figure 1. Monotonicity-conserving curve for dataset pro-  Figure 2. Monotonicity-conserving curve for dataset pro-
vided in Table 1. vided in Table 2.

281

2.6

241

2.2r

2

Z-axis

1.8

1.6

t-axis 0 0 f-axis f-axis

Figure 3. Monotone surface generated from dataset in  Figure 4. Monotone surface generated from dataset in
Table 3. Table 4.

Table 5. Numerical outcomes for Table 1.

1 1 2 3 4 5 6 7
d; | 4.0000 | 4.0000 | 4.0000 | 4.0000 | 3.4641 | 1.7321 | 0.5000
0; | 3.2321 | 3.2321 | 3.2321 | 3.2321 | 3.2321 | 3.2321 | —
& | 1.3281 | 1.3281 | 1.3281 | 1.3281 | 1.3281 | 1.3281 | —

Table 6. Numerical outcomes for Table 2.

i |1 2 3 4 |5

d; | 0.70893 | 1.3608 | 10.46 | 12 | 12
5 105 0.5 05 |05]|—
& 05 0.5 05 |05 —
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Table 7. Numerical outcomes for Table 3.

(&G, f) J01 149 [252 [349 [35
Numerical outcomes for Fi )
0.1 0.2813 | 0.0762 | 0.0486 | 0.0357 | 0.0356

1.49 0.4326 | 0.2945 | 0.2518 | 0.2252 | 0.2250

2.52 0.3131 | 0.2510 | 0.2234 | 0.2044 | 0.2042

3.49 0.2637 | 0.2240 | 0.2039 | 0.1892 | 0.1891

3.5 0.2599 | 0.2204 | 0.2005 | 0.1859 | 0.1858
Numerical outcomes for F‘i‘ .
0.1 0.2813 | 0.4326 | 0.3131 | 0.2637 | 0.2599

1.49 0.0762 | 0.2945 | 0.2510 | 0.2240 | 0.2204

2.52 0.0486 | 0.2518 | 0.2234 | 0.2039 | 0.2005

3.49 0.0357 | 0.2252 | 0.2044 | 0.1892 | 0.1859

3.5 0.0356 | 0.2250 | 0.2042 | 0.1891 | 0.1858
Numerical outcomes for d; ;
0.1 0.001 0.001 0.001 0.001 —

1.49 0.001 0.001 0.001 0.001 —

2.52 0.001 0.001 0.001 0.001 —

3.49 0.001 0.001 0.001 0.001 —

Numerical outcomes for &; ;

0.1 0.001 0.001 0.001 0.001 -
1.49 8.0909 | 20.25 28.506 | 36.173 | —
2.52 19.79 31.5 40.085 | 48.141 | —
3.49 2570.4 | 3687.5 | 4513.7 | 5291.1 | —
3.5 - - - - -
Numerical outcomes for §; ;41

0.1 0.001 0.001 0.001 0.001

1.49 0.001 0.001 0.001 0.001 —

2.52 0.001 0.001 0.001 0.001 —

3.49 0.001 0.001 0.001 0.001 —

3.5 - - - - -

Numerical outcomes for &; ;11

0.1 0.001 0.001 0.001 0.001 —

1.49 20.25 28.506 | 36.173 | 36.251 | —

2.52 31.5 40.085 | 48.141 | 48.224 | —

3.49 3687.5 | 4513.7 | 5291.1 | 5299.1 | —

3.5 - - - - -

Numerical outcomes for §; ;

0.1 0.001 0.001 0.001 0.001 —

1.49 0.001 0.001 0.001 0.001 —

2.52 0.001 0.001 0.001 0.001 —

3.49 0.001 0.001 0.001 0.001 —

3.5

Numerical outcomes for i j

0.1 0.001 8.0909 | 19.79 25704 | —

1.49 0.001 20.25 31.5 3687.5 | —

2.52 0.001 28.506 | 40.085 | 4513.7 | —

3.49 0.001 36.173 | 48.141 | 5291.1 | —

3.5

Numerical outcomes for d;41 ;

0.1 0.001 0.001 0.001 0.001

1.49 0.001 0.001 0.001 0.001

2.52 0.001 0.001 0.001 0.001

3.49 0.001 0.001 0.001 0.001

3.5

Numerical outcomes for §;11 ;

0.1 0.001 8.0909 | 19.79 2570.4 | —

1.49 0.001 20.25 31.5 3687.5 | —

2.52 0.001 28.506 | 40.085 | 4513.7 | —

3.49 0.001 36.173 | 48.141 | 5291.1 | —

35 - - - - -
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Table 8. Numerical outcomes for Table 4.

(&, f) | 25 1.10 25.65
Numerical outcomes for F‘f}

2.5 0.018402 | 0.022177 0.024848
11.10 | 0.056414 | 0.063433 0.068132
25.65 | 0.0000829 | 0.00011379 | 0.00013793
Numerical outcomes for sz ;

2.5 0.034137 | 0.08483 0.00027203
11.10 | 0.038833 | 0.091988 0.00033832
25.65 | 0.041931 | 0.096534 0.00038523
Numerical outcomes for ¢;_;

2.5 0.001 0.001 -

11.10 | 0.001 0.001 -

25.65 | — - -
Numerical outcomes for &; ;

2.5 0.001 0.001 -

11.10 | 2.3508 2.3508 -

25.65 | — - -
Numerical outcomes for d; j+1

2.5 0.001 0.001 -

11.10 0.001 -

25.65 | 0.001 - -
Numerical outcomes for &; ;41

2.5 0.001 0.001 -

11.10 | 2.3508 2.3508 -

25.65 | — - -
Numerical outcomes for d; ;

2.5 0.001 0.001 -

11.10 | 0.001 0.001 -

25.65 | — - -
Numerical outcomes for &; ;

2.5 0.001 2.53 -

11.10 | 0.001 2.53 -

25.65 - -
Numerical outcomes for 5i+1,j

2.5 0.001 0.001 -

11.10 | 0.001 0.001 -

25.65 | — - -
Numerical outcomes for §i+1}j

2.5 0.001 2.53 -

11.10 0.001 2.53 -

25.65 | — - -
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Figure 5. tz view of monotone surface generated from  Figure 6. fz view of monotone surface generated from

dataset in Table 3. dataset in Table 3.
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Figure 7. tz view of monotone surface generated from  Figure 8. fz view of monotone surface generated from
dataset in Table 4. dataset in Table 4.

scientific phenomena. We then deduced certain constraints on both of these parameters to keep the shape
of monotonic 2D data. To estimate the derivative values, the geometric mean approach has been used. The
formulation of the monotonic C' continuous rational cubic spline function is extended to a monotone rational
bicubic partially blended surface, where the data are guaranteed to be organized over a rectangular grid. Once
again the parameters in the elucidation of the bicubic partially blended functions have been constrained for
monotonicity. Eye-catching and appealing curves and surfaces are then acquired that can be used in systems

that require such models.

References

[1] Hussain MZ, Sardraz M, Shaikh TS. Monotone data visualization using rational functions. World Appl Sci J 2012;
16: 1496-1508.

12



TARIQ et al./Turk J Elec Eng & Comp Sci

Sardraz M, Hussain MZ, Nisar A. Positive data modeling using spline function. Appl Math Comput 2010; 216:
2036-2049.

Kvasov BI. Monotone and convex interpolation by weighted cubic splines. Comp Math Math Phys 2013; 53: 1428-
1439.

Ibraheem F, Hussain M, Hussain MZ. Monotone data visualization using rational trigonometric spline interpolation.
Sci World J 2014; 2014: 602453.

Hussain M, Hussain MZ. Convexity preserving piecewise rational bi-cubic interpolation. Computer Graphics and
CAD/CAM 2008; 2: 14-24.

Hussain M, Hussain MZ, Waseem A, Javaid M. GC' shape preserving trigonometric surface. J Math Imaging Vis
2014; 53: 21-41.

Floater MS, Pena JM. GC' monotonicity preservation on triangles. Math Comput 2000; 69: 1502-1519.

Hussain MZ, Sarfraz M, Hussain F. Shape preserving positive trigonometric spline curves. Iran J Sci Technol A
2016; 59: 1-13.

Hussain MZ, Hussain M, Waseem A. Shape preserving trigonometric functions. Comp Appl Math 2014; 2: 411-431.

Sarfraz M, Hussain MZ, Hussain M. Modeling rational spline for visualization of shaped data. Journal of Numerical
Mathematics 2013; 2: 63-88.

13



	Introduction
	Rational cubic and bicubic partially blended functions
	Monotone curve model
	Monotone surface model
	Numerical examples
	Numerical values
	Conclusion

