
Journal of Prime Research in Mathematics Vol. 13(2017), 90-106

ADAPTIVE RADIAL BASIS FUNCTION FOR TIME

DEPENDENT PARTIAL DIFFERENTIAL EQUATIONS

SYEDA LAILA NAQVI1, JEREMY LEVESLEY2, SALMA ALI3

Abstract. We propose a meshless adaptive solution of the time-dependent
partial differential equations (PDE) using radial basis functions (RBFs).
The approximate solution to the PDE is obtained using multiquadrics
(MQ). We choose MQ because of its exponential convergence for suffi-
ciently smooth functions. The solution of partial differential equations
arising in science and engineering frequently have large variations occur-
ring over small portion of the physical domain. The challenge then is to
resolve the solution behaviour there. For the sake of efficiency we require
a finer grid in those parts of the physical domain whereas a much coarser
grid can be used otherwise. Local scattered data reconstruction is used to
compute an error indicator to decide where nodes should be placed. We
use polyharmonic spline approximation in this step. The performance of
the method is shown for numerical examples of one dimensional Kortweg-
de-Vries equation, Burger’s equation and Allen-Cahn equation.

1. Introduction

Partial differential equations (PDEs) with solutions that have highly local-
ized properties appear in many areas of application, such as combustion, shock
hydrodynamics and transport in porous media. The solutions of such PDEs
sometimes exhibit steep gradients, corners, and rapid topological changes.
Such examples include, shock hydrodynamics [24, 7], transport in turbulent
flow fields, moving front problems [9, 4], combustion processes [1], reactive
or non-reactive flows [18], and singularities in interface flows [5]. The solu-
tion, if exits, is difficult to obtain analytically so one needs to use a numerical
approach. There are cases when even numerical solution becomes hard to
achieve, such as PDEs solved in complex geometries with nonlinearities.
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An ongoing research area, in most of the engineering and science problems is
numerical simulation. Most of the techniques for these simulations in complex
geometries depends upon discretizing the domain using a grid or triangulation.
The major methods include the finite difference (FDM), finite volume (FVM),
finite element (FEM), and spectral methods. The discretization in all of these
traditional methods involves some sort of mesh generation or triangulation of
the region of interest. This may result in an increase in computational cost,
especially in high dimensions.

The use of a uniform mesh for problems with localized features can be
computationally expensive especially in multidimensions, where the required
degrees of freedom (DoF) can be prohibitively large. An alternative to the
uniform grid, called mesh adaptivity is to flag more points in the region of high
variation, and few points in rest of the domain. Mesh adaptivity is preferred
over a uniform grid for the sake of efficiency. The adaptive grid should reflect
the profile of the solution. Information concerning adaptive methods using
different approaches can be found in [12, 8, 14, 13, 9, 19, 22], and references
therein.

Radial basis function (RBF) methods are not tied to a grid and in turn
belong to a category of the aforementioned meshfree methods.

2. Radial basis function

Given a set of centers X = {x1, · · · ,xN} ⊂ Rd, the RBF interpolant takes
the form

s(x) =
N∑
j=1

λjφ(‖ x− xj ‖2), x ∈ Rd, (1)

where φ(r) is defined for r ≥ 0 and the coefficients, λ, are chosen by enforcing
the interpolation condition s(xi) = f(xi) at a set of nodes that typically
coincides with the centers. Enforcing the interpolation condition at N centers
results in a N ×N linear system.

A λ = f,

or in expanded form,
φ(‖ x1 − x1 ‖2) φ(‖ x1 − x2 ‖2) ... φ(‖ x1 − xN ‖2)
φ(‖ x2 − x1 ‖2) φ(‖ x2 − x2 ‖2) ... φ(‖ x2 − xN ‖2)

. . . .

. . . .

. . . .
φ(‖ xN − x1 ‖2) φ(‖ xN − x2 ‖2) ... φ(‖ xN − xN ‖2)




λ1
λ2
.
.
.
λN

 =


f(x1)
f(x2)
.
.
.

f(xN )

 ,

which has to solved for λ Sometimes the assumption on the form of equation
(1), for solution to the scattered data interpolation problem is extended by
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adding certain polynomials to the expansion, i.e., s(x) is now assumed to be
of the form

s(x) =
N∑
j=1

λiφ(‖ x− xj ‖) + p(x), x ∈ Rd, (2)

where p ∈ πdm−1, the polynomials of degree m − 1 in Rd. The dimension of

πdm−1 is

M =

(
d+m− 1

m− 1

)
.

The choice of m is motivated by the degree of conditional positive definiteness
of the function φ; see [23]. Equation (2) can be written as

s(x) =
N∑
j=1

λjφ(||x− xj ||) +
M∑
l=1

dlpl(x). (3)

Enforcing the interpolation conditions s(xi) = f(xi), i = 1, · · · , N , leads to
a system of N linear equations in N + M unknowns λj and dl, one usually
adds M additional conditions to ensure a unique solution. A popular choice
of conditions, as with the univariate natural boundary conditions, is

N∑
j=1

λjpl(xj) = 0, l = 1, · · · ,M.

The classical choice for radial basis function φ along with their order m is
given in the following table .

Table 1. Radial Basis Functions.

RadialBasisFunction ϕ(r) = Parameters Order m
Polyharmonic Splines rν ν > 0, ν /∈ 2N m ≥ [ν2 ]

Thin Plate Splines (TPS) r2klog(r) k ∈ N m ≥ k + 1

Gaussians e−(cr)
2

c > 0 m ≥ 0

Multiquadrics(MQs) (c2 + r2)
ν
2 ν > 0, ν /∈ 2N, c > 0 m ≥ [ν2 ]

Inverse Multiquadrics(IMQs) (c2 + r2)
ν
2 v < 0, c > 0 m ≥ 0

Our numerical approximations are based on multiquadrics (MQ). The method
was introduced by Hardy in 1971 and the exponential convergence rate of the
MQ interpolation for smooth functions was proved by Madych and Nelson in
1992 [15]. The RBF methods suffer with ill-conditioning while giving good
accuracy. This relation is described as the uncertainty principal in RBF in-
terpolation and was documented by Schaback in [20]. The infinitely smooth
RBFs can gives exponential convergence as compared to the piecewise smooth
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RBFs where the convergence is of algebraic order. The convergence of the
RBFs containing the shape parameter, can be discussed in stationary and
non-stationary settings. In stationary approximation, the ratio of the shape
parameter to the number of centers remains more or less fixed, whereas in a
non-stationary approximation keeps the ratio will either decrease or increase.
In the non-stationary setting with increasing N the error behaves as

|f(x)− s(x)| ≤ e−
K(c)
h , (4)

where K(c) is a constant depends on the value of the shape parameter and h is
the fill distance. However, since condition numbers can be high, errors occur
due to rounding, and it is often difficult to obtain highly accurate results. In
the stationary setting, the estimate (4) cannot be used since the exponential
exponent remains more or less fixed.

Interpolation by radial basis functions is a viable choice in several adaptive
methods in a number of time-independent and time-dependent settings. For
instance, Driscoll and Heryudono [9] have proposed the resudial subsampling
method for interpolation, boundary-value, and initial-boundary-value prob-
lems with high degrees of localization. Schaback et al. [11] have used a greedy
adaptive algorithm where the method is of linear convergence. Behrens et
al.[4] have combined a semi-Lagrangian method with local RBF approxima-
tion, specifically, thin plate splines, for linear transport equations. An exten-
sion of the method can be in seen in [2] for the non-linear transport equations
i.e., Burgers equation and the Buckley-Leverett equation which describes a
two-phase fluid flow in a porous medium. Davydov [8] has proposed an adap-
tive meshless discretization based on generalized finite difference stencils. To
generate the finite difference stencils they preferred RBFs due to their robust-
ness on highly irregular data over the local polynomial least square method
which is the best known approach considered in literature for the generation
of the stencils. Iske et al.[13] combined the adaptive particle methods with the
scattered data reconstruction through polyharmonic splines, which plays a key
role in their method. The numerical stability and approximation behaviour
of the polyharmonic splines have been discussed. Their method performed
well on real world problems, for instance, tracer transport problem in the arc-
tic stratosphere and a popular test case scenario from hydrocarbon reservoir
modelling, termed the five-spot problem. Sarra [19] modified a simple moving
grid algorithm from finite differences to RBF methods.

3. Adaptive method

The essence of most of the adaptive methods for time-dependent PDEs is a
cyclic procedure [9]: solve → error indicator → refine/coarsen, and the cycle
terminate when a stopping criterion is satisfied. The procedure solve in the
time-dependent sense means that the solutions to the PDEs are obtained by
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marching in time using any explicit/implicit ODE solver. By space discretiza-
tion using MQ-RBF in a method of lines scheme, we get a system of ODEs to
advance in time for the solution of underlying PDE. Numerical experiments
shows that adjustment of shape parameters with the number of centers can
produce invertible, well-conditioned interpolation matrices in finite precision
arithmetic. The adjustment of shape parameters means that every center will
have its own shape parameter and the size of shape parameter will be related
to the distance to its nearest neighbours. Once the approximate solutions are
obtained the information is then passed to the error indicator which gathers
the information about the local approximation quality of the the interpolation
around x ∈ X.

The error indicator can be considered as a function of the node set X i.e.,
η : X→ [0,∞] which assigns a significance value to each node x ∈ X. Let sNx

be the polyharmonic spline reconstruction which matches the solution values
at a node set Nx ⊂ X\x in a neighbourhood around x but not at x:

sNx(v) = u(v) ∀v ∈ Nx. (5)

The adaption relies on the error indicator defined as

η(x) = |u(x)− sNx(x)| for all x ∈ X, (6)

where u is the approximation to the true solution, obtained by the MQ-RBF.
The error indicator will be high if the approximate solution and a second

approximation deviate significantly in a region of interest. Then we will add
new points into this region. If there is little deviation we will consider removing
points.

The polyharmonic splines are of the form,

Φd,k(r) =

{
r2k−d log(r), if d is even,

r2k−d, if d is odd,
(7)

where k is required to satisfy 2k > d. We will take the order m = k for
Φd,k(r) ∈ CPDd(m). This particular choice of m rather than the minimal

choice m = k − dd/2e + 1 means that, the Beppo Levi space BLk(Rd), given
by

BLk(Rd) = {f ∈ C(Rd) : |f |k =
∑
|α|=k

k!

α!
‖Dαu‖2 <∞}, (8)

is the optimal recovery space for the polyharmonic splines kernel Φd,k; see the
seminal papers of Meinguet [16, 17]. With this choice of m = k the interpolant
in (2) takes the form

s(x) =

N∑
j=1

cjΦd,k(‖x− xj‖) +
∑
|α|<k

dαx
α. (9)
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Scattered data approximation by polyharmonic splines is optimal in the na-
tive reproducing kernel semi-Hilbert space, which in the case of polyharmonic
splines, is the above Beppo Levi space; see [10].

The local residual is the criteria for mesh refinement or coarsening. The
decision is then passed to the refine/coarse stage. Refinement is 1-D context
is, adding two nodes (left and right) around the node which lies in the region
of high activity. We found that removal of all of the nodes which are less than
the coarsening threshold θcrs is not an effective approach in our experiments.
This strategy can lower approximation quality too much in the smooth re-
gions. We therefore sort the residuals and remove a percentage i.e., residuals
are ranked from worse to least worse and we only remove points from those
nodes associated with a certain percentage at the poor end of the scale. This
percentage depends on the underlying problem. Coarsening a percentage is a
crucial step in our adaptive method.

4. Numerical experiments for time-dependent PDEs

We will now present numerical results for one-dimensional time-dependent
PDEs .The thresholds used for the refining and coarsening are denoted by θref
and θcrs respectively. The choice of the thresholds is problem dependent. We
will be using the classical Runge-Kutta (RK4) method for intergrading in time
unless otherwise stated. All the numerical experiments are run in MATLAB
on Windows 7 system running at 3.10 Ghz with 8 GB memory.

4.1. Korteweg-de Vries (KdV) propagation of a single soliton. The
KdV equation first arose in connection with water waves, but it was later
realized that it is a model equation which balances nonlinearity and dispersion.
The equation can be used to study nonlinear waves with an effect of dispersion
in any medium. Korteweg and de Vries showed that unidirectional propagation
of small-amplitude long waves in water of relatively shallow depth could be
described approximately by a nonlinear partial differential equation. A solitary
wave is one of the solutions which exist for this model. The conventional,
nondimensional version of the third-order nonlinear KdV equation is

ut + εuux + µuxxx = 0, (10)

The boundary and initial values can be derived from the exact solution given
as

u(x, t) = 2 sech2(x− 4t). (11)

Here u represents the height from the average water surface and x is the
coordinate moving with the velocity of a linearized wave with u→ 0 as |x| →
∞, where u is dependent variable, x is a spatial independent variable, t is the
time independent variable. The numbers ε, µ are real constants.



96 Syeda Laila Naqvi, Jeremy Levesley, Salma Ali

In this example, we study a single soliton solution (10) with an exact solu-
tion given in (11). We choose ε = 6 and µ = 1. The initial condition u(x, 0)
and boundary functions f, g can be obtained from the exact solution in (11).
The computational domain is [−10, 40] × [0, 5]. The adaptive profiles of the
single soliton for t = 0, 1, 2, 3, 4, 5 can be seen in Figures 1-3. The thresholds
for refining θref = 10−3 and for coarsening θcrs = 10−6. The method is ad-
vanced in time using the classical RK4 method. Initially we started with 70
equally spaced points and adapted the solution at every time level. For the
one-dimensional problems we have used the polyharmonic splines which is the
natural spline of order 2k. For instance, for KdV equation the polyharmonic
spline will be of the form

φ1,k = r2k−1 (12)

with the order m = k ≥ 1. In our examples we have used k = 3 which will be
of the form

φ1,3 =‖ x− xj ‖5 +d0 + d1x+ d2x
2. (13)

Figure 1. Left: Initial adaptive discretization at time t = 0,
Right: Soliton moving from left to right, adaptive solution at
time t = 1.

Table 2. Comparison of Adaptive and Non-Adaptive methods
for the single soliton at final time t = 5

Adaptive/Non-Adaptive RBF DoF Max-Error RMS-Error

Non-Adaptive MQs 151 5.8845E − 3 2.9854E − 3
Non-Adaptive Guassian 151 1.1698E − 3 5.78964E − 4
Non-Adaptive IMQs 251 3.8734E − 3 1.1961E − 3
Adaptive MQ 94 8.6922E − 3 3.2295E − 3

On the initial discretization of nodes, we adaptively select the nodes and
the shape parameters t0 = 0 (Figure 1). We then marched in time to obtain
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Figure 2. The profile of the adaptive solution at time t = 2
and t = 3

Figure 3. The profile of the adaptive solution at time t = 4
and t = 5

the solution at time t = t0 + ∆t, using explicit RK4. Once the solution
is obtained we compute an RBF interpolant to approximate the solutions
at time t = t0 + ∆t, we can now apply the adaptive algorithm which will
give us a new set of adaptively selected nodes and shape parameters. The
procedure will continue for every time level and will stop when the final time
arrives. The adaptive method uses almost half the number of points of the non-
adaptive method for the KdV (see Table 2). The performance of the method is
compared using the maximum error, ‖ uN−u ‖max= max

1≤i≤N
| uNi −ui | and the

root mean square (RMS),

√∑N
i (uNi −ui)2

N . The adaptive method just shifts the
points with increasing time, which is due to movement of the soliton solution of
the problem. We can see from Table 2 that the adaptive method has efficiently
solved the problem with the same accuracy compared to non-adaptive RBF
but with less number of nodes.

4.2. Interaction of two solitons. This example studies the interaction of
the two solitons solution of Equation 10 with ε = 6 and µ = 1. The initial
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condition is:

u(x, t0) = 12
3 + 4 cosh(2x− 8t0) + cosh(4x− 64t0)

(3 cosh(x− 28t0) + cosh(3x− 36t0)2
, (14)

where t0 is the initial time. The exact solution of 10 for interaction of two
soliton is given by

u(x, t) = 12
3 + 4 cosh(2x− 8t) + cosh(4x− 64t)

(3 cosh(x− 28t) + cosh(3x− 36t)2
. (15)

The boundary functions f, g can be obtained from the exact solution.
The computational domain is [−15, 15]× [−0.3, 0.3]. The profile of interac-

tion of the two solitons shows that the adaptive method is able to track the
developing features of the profile of the solution. We have recorded the results
for t = −0.3 , −0.25, −0.2, −0.15, −0.1, −0.05, 0, 0.05, 0.1, 0.15, 0.2, 0.25,
0.3 in Figures (4-9).

We started the adaptive interpolation with 80 equally spaced points where
the refining threshold θref = 10−3 whereas the coarsening θcrs = 10−7. To
maintain the balance in refining and deleting the number of points we coars-
ened 70% of the sorted errors. We solved this problem with MATLAB built-in
ode15s ODE solver with ∆t = 0.0001. The adaptation occurred at every time
step.

Figure 4. Interaction of two solitons moving from right to
left, the profile at time t = −0.3, t = −0.25

Figure 4 is the profile of solitons moving from right to the left. We recorded
this before the interaction actually happens. We can see that the adaptive
algorithm is using a finer set of points where required.

Interaction of the two waves can be seen in Figure (5). We observed and
recorded the results at the time levels when the interaction actually happened.
We can see that at t = −0.05 the shorter wave passes through the bigger wave
towards the left. At time t = 0.1 it interacted with a total number of adaptively
adjusted points N = 152.
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Figure 5. Interaction of two solitons moving from right to
left, this profile is just before the interaction and recorded at
time t = −0.2 and −0.15

Figure 6. The smaller solitary wave is interacting with the
larger wave at time t = −0.1 and t = −0.05

Figure 7. The smaller solitary wave is interacting with the
larger wave at time t = −0.1, t = −0.05, t = 0.05 and t = 0.1.

Figure (9) shows that taller wave catches up, interacts with the shorter one
and then passes towards the left. We can see that this is like almost no effect
of interaction at all. Adaptive algorithm performed well to place a finer grid
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Figure 8. At time t = 0.15 and t = 0.2 the effects of interaction

Figure 9. The waves retain to the original shape at t = 0.25,
t = 0.3

in a region of high variation. The process ends up with a total number of
N = 155 adaptively distributed points.

Table 3. Comparison of Adaptive and Non-Adaptive methods
for the of interaction of two solitons at final time t = 0.3

Adaptive/Non-Adaptive RBF Degrees of Freedom Max-Error RMS errors

MQs 201 9.5E − 3 4.7E − 3
Gaussian 201 1.4E − 3 5.4E − 4
IMQs 201 3.4E − 3 5.7E − 3
Adaptive MQ 155 4.9E − 3 1.5E − 3

The adaptive method captured the developing features the solution at all
times. In Table 3 we presented a comparison with the non-adaptive RBF
method [21].
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4.3. Burger’s equation. Burgers equation is a nonlinear advection-diffusion
problem [6]. It is defined as

εuxx − uux = ut, (16)

where ε ≥ 0 is a given parameter and will be chosen such that it develops a
shock. The solution then exhibits moving fronts that can be made arbitrarily
sharp by decreasing the kinematic viscosity ε as a coefficient of the second-
derivative uuxx term which is the dissipation term.

Burgers equation appears in various fields of applied mathematics. The
applications can be seen in modelling of fluid dynamic, shock wave forma-
tion, traffic flow, turbulence, boundary layer behaviour. Initially the Burgers
equation was introduced to describe turbulence in one space dimension.

We will now consider this moving front problem given by (16) which is a
common test problem for adaptive methods; see [9] and references therein.
The initial condition is

u(x, 0) = sin(2πx) +
1

2
sin(πx), (17)

with the boundary conditions

u(0, t) = u(1, t) = 0. (18)

The boundary conditions are taken to be zero which diminish the amplitude
of the wave with increasing time. Here u(x, t) is a wave that generates a steep
front of width O(ε) and moves towards x = 1. This is one of the principal
reasons which makes Burger’s equation a stringent test problem. The solution
u(x, t) steepens with increasing time t and become difficult to resolve spatially.

The computational domain we are using is (0, 1) × [0, 1] with parameter
ε = 10−3. Solution is advanced in time using the MATLAB built-in stiff
ode-solver ode15s with ∆t = 0.01. We have given the Jacobian matrix in
odetset for the stiff solver ode15s to work faster. The thresholds θref = 10−5

and θcrs = 10−8. The method starts initially with 13 equally spaced nodes
and the adaptation occurs at every time level until the final time arrives. All
the residuals becomes less than 10−5 with a total number of 155 adaptively
selected nodes in the domain. The coarsening percentage for this problem is
20% of the sorted array of best errors. The polyharmonic splines φ1,2 = r3

will be used for the error estimator for Burgers equation.
For the given smooth initial condition (18) the solution is moving towards

1, and generating a steep moving front. Due to the zero boundary conditions
solution decays with time. In Figures (10-12) we can observe that our adaptive
method is performing well and adaptively refine path of the moving front. The
residuals are less than 2 × 10−5 as compared to 5 × 10−4 in [9].
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Figure 10. Adaptive RBF method for the Burgers equation
at time t = 0.4 and t = 0.6

Figure 11. Adaptive RBF method for the Burgers equation
at time t = 0.4 and t = 0.6

Figure 12. Adaptive RBF method for the Burgers equation
at time t = 0.6 and t = 0.8

4.4. Allen-Chan Equation. The Allen-Chan equation is defined as:

ut = u(1− u2) = νuxx (19)
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where the parameter ν = 10−6 and the computational domain [−1, 1] ×
[0, 8.25], the initial condition is:

u(x, 0) = 0.6x+ 0.4 sin[
π

2
(x2 − 3x− 1)] (20)

and the boundary conditions are:

u(−1, t) = −1, u(1, t) = 1 (21)

Figure 13. Adaptive solution for the Allen-Cahn equation at
at time t = 0, and t = 2

Figure 14. Adaptive solution for the Allen-Cahn at time t = 4
and t = 6
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Figure 15. Adaptive solution at the final time t = 5

In this experiment we have used parameter ν = 10−6 and the computa-
tional domain [−1, 1] × [0, 8.25]. The adaptation occurs every 15 time steps
since we observed that the solution is not changing its profile rapidly. We
started the algorithm with 30 initially equally distributed points in the do-
main. The thresholds are θcrs = 10−5 and θref = 10−3. In this experiment
we coarsened 30 percent of the residuals. Figures (13-15) are depicting that
adaptive algorithm efficiently place a finer grid in the region of high activ-
ity and coarsen where the solution lies in smooth region. The fourth order
Runge-Kutta method is used for time stepping and the step size we used is
0.01. All the residuals are below 10−3 at the final time and we ended up to
a total number of 169 adaptively selected nodes as compared to 178 nodes in
[9].

5. conclusions

The adaptive spectral methods are preferred for problems with steep gradi-
ents, sharp corners, moving fronts and with singularities. We have developed
the adaptive scheme for a single soliton and interaction of two solitons solution
of the third order nonlinear KdV equation. A large number of nonlinear dis-
persive systems can be described by the KdV equation or one of its modified
form. Some interesting numerical results are found during this journey, but
keeping in mind that the RBF is relatively new subject much of its behaviour
still requires rigourous justification. In this context the theoretical analysis
is far from complete. Our method uses MQ-RBFs to approximate the solu-
tion, making use of its spectral orders of convergence. For indicating regions
of high error, we reconstruct the solutions in a local neighbourhood around
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every node using polyharmonic splines, which is a popular choice for adaptive
schemes [3]. For instance, η(x) = |u(x) − sNx(x)| for all x ∈ X, where u(x)
is the MQ approximation at the point and sNx(x), is the local reconstruction
around x but not at x. The polyharmonic splines for the 1-D case becomes
the natural splines, for the KdV equation we have used φ1,3 = |x− xi|5.

Our goal was to obtain a numerical solution with as few degrees of freedom
as possible, by using an adaptive approach such that the errors are below a
prescribed threshold. Solving the problem with fewer DoF can be efficient
in saving the computer storage and using adaptation at selected intermediate
levels can be computationally less expensive.

The implementation of the schemes results in problem solutions with almost
half the number of the grid points than the non-adaptive scheme. The com-
parison can be seen in Table 2 for a single soliton and Table 3 for interaction of
two solitons. The results show that our method is able to track the developing
features in the solution profile. The method has also shown promising results
for the second order nonlinear difficult problems, i.e., the Burgers equation
with the moving front solution and the Allen-Cahn equation. The method is
able to add more points in the region of high variation.

For future work we intend to solve higher dimensional problems since the
real power of the RBF method is to utilise its robustness to point position
(unlike FEM methods) to solve such problems.
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