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Abstract

Plasmas exhibit a vast variety of waves and oscillations in which moving charged
particle produce fields which ultimately give rise to particle motion. These wave-particle
effects are used in the acceleration heating methods of plasma particles, and in wave
generation as well. Plasmas are often manipulated with EM waves, e.g., Alfvén waves
are long-wavelength modes (drift-waves) where fluid theory is most reliable, while for
short wavelength modes (e.g., Kinetic Alfvén waves), collisionless effects becomes
important. In this chapter, the properties of kinetic Alfvén waves are aimed to study by
employing two potential theory by taking particle streaming and Weibel instability with
temperature anisotropy in a Lorentzian plasma.

Keywords: KAWs, Lorentzian distribution, streaming and temperature anisotropy,
dusty plasma

1. Introduction

This chapter addresses one of the intriguing topics of Astrophysics—the existence of kinetic
Alfvén wave (KAW) and the important consequences for astrophysical and space science to
explore and investigate the new avenues. Due to the fact that KAWs have non-zero electric
field E∥ which is parallel to background magnetic field and possess anisotropic polarized and
spatial structures which contribute to particle energization. It is an interesting mechanism that
KAWs can accelerate the field-aligned charged particles and has been applied in the dissipa-
tion of solar wind turbulence, the acceleration, and heating of charged particles in both the
filed-aligned and perpendicular directions and is anticipated to play a vital role in the particle
energization in laboratory, space and astrophysical plasma. The progress reported here would
have immense impact and hence a small step in particular direction.

The solar wind plasma is hot and weakly collisional, existing in a state far from thermal
equilibrium [1] as observed in situ in the solar wind through its nonthermal characteristics of
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velocity distribution function (VDF). The electron VDFs measured at 1 AU have been used as
boundary condition to determine the VDFs at different altitudes. It has been confirmed that for
several solar radii, the suprathermal population of particles is present in the corona [2]. For low
collision rates in such plasmas, the particles can develop temperature anisotropy and the VDFs
become slanted and build up high energy tails and heat fluxes along the magnetic field
direction especially in fast winds and energetic interplanetary shocks. Various processes in a
collisionless solar wind plasma lead to the development of particle temperature anisotropy to
generate plasma instabilities which are often kinetic in nature. The free energy sources associ-
ated with the deviation from the thermodynamical equilibrium distribution function could
also excite plasma waves [3–11].

In general, the study of plasma waves and micro-instabilities in the solar wind shows that
proton VDFs are prone to anisotropic instability and originate to be stable or marginally stable.
Marsch [12] has discussed four significant electrostatic and electromagnetic wave modes and
free energy sources to make them unstable. For example, the electrostatic ion acoustic wave
may be destabilized by the ion beams and electrons and electron heat flux, [13] the electro-
magnetic ion Alfvén-cyclotron wave needs proton beam and temperature anisotropy,
magnetosonic wave requires proton beam and ion differential streaming and whistler-mode
and lower-hybrid wave [14] unstable solutions. Among several electromagnetic instabilities,
the kinetic Alfvén wave instability is the most important one.

The satellite missions in space and astrophysical plasmas have confirmed the presence of non-
Maxwellian high energy and velocity tails in the particle distribution function and found in the
magnetosphere of Saturn, Mercury, Uranus and Earth [2, 15–17]. The non-Maxwellian distribu-
tion of charged particles has been observed to give a better fit to the thermal and superthermal
part by employing kappa distribution, since it fits both thermal and suprathermal parts in the
energy velocity spectra.

The subject area of this chapter involves the basic research of space plasma physics and in
particular, focuses the investigations of electrostatic and electromagnetic waves in a multi-
component dusty (complex) Maxwellian and non-Maxwellian plasmas. In the last few years,
various power-law distribution functions (in velocity space), i.e., kappa and r; qð Þ have been
used to investigate collective phenomena and associated instabilities, such as dust-acoustic
waves, kinetic Alfvén waves, Weibel instabilities, dust charging processes (in linear and
nonlinear regimes) in space and astrophysical situations for better fitting the observational
data in comparison to Maxwell distribution. These distributions have relevance to space
plasmas containing solar wind, interstellar medium, ionosphere, magnetosphere, auroral
zones, mesosphere, lower thermosphere, etc.

When the intense radiations interact with plasmas, it ends up with many applications like
instabilities, inertial confinement fusion [18], and pulsar emissions [19]. These instabilities
further generate turbulent electromagnetic fields in plasma regimes. We can characterize
instabilities as electrostatic as well as electromagnetic according to the conditions provided by
nature [20]. In this chapter, we shall also discuss electromagnetic instability called Weibel
instability in a Lorentzian plasma. The free energy source available for Weibel instability is
temperature anisotropy and can be developed in magnetically confined and magnetic free
plasma environment as well. First time Weibel [21] came up with the calculations of impulsive
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growing transverse waves with anisotropic velocity distribution function in 1958. This instability
developed when the electrons in the fluctuating magnetic field generates momentum flux, this
flux sequentially effects velocity < v > (and ultimately current density < J >) as to increase the
fluctuating field [22]. The property of Weibel instability is that it is different from normal
resonant wave-particle instabilities because it depends on effects in bulk plasma without any
resonant particle contributions [23]. The particle distribution functions in kinetic model ade-
quately describe a physical phenomenon in terms of time and phase space configurations
providing more information to investigate plasma waves, instabilities, plasma equilibrium,
Landau damping phenomena, etc. In this chapter, we shall review the kinetic/Inertial Alfvén
waves and instabilities, the effects of dust grain charging as well as field aligned/cross field
currents, streaming velocity and the non-Maxwellian power-law distribution and its effect on
various electromagnetic modes. We intend to show that the presence of dust grains introduces a
new cutoff frequency Ωdlh which is associated with the motion of mobile charged particles.
Moreover, an interesting feature is to show that the employed model inhibits the temperature
anisotropy and supports the velocity anisotropy. Further, we shall calculate the linear dispersion
relation for Weibel instability in Lorentzian plasma B0 ¼ 0;B0 6¼ 0ð Þ by using linearized, nonrel-
ativistic Vlasov equation. We shall solve Z∗

κ αð Þ by assuming α < 1 or α > 1 for κ ¼ 3, 5, 7.

2. Model and methodology

In long-wavelength modes the fluid theory is most reliable, while for short wavelength modes
(like KAWs), collisionless effects are important, for example, Landau damping due to finite ion
Larmor radius explains observed damping rate and in dusty plasmas and charge fluctuations.
Kinetic Alfvén waves (KAWs) are small scale dispersive Alfvén waves (AWs) which plays a
significant role in particle acceleration and plasma heating. A coupling mechanism between
small-scale KAWs and large-scale AWs in the presence of superthermal particles has been
discussed which in turns giving rise to the excitation of KAWS in a solar/stellar wind plasma
have been studied in the past. In this chapter, we intend to show the relationship between the
growth rates of excited anisotropic KAWs and perpendicular wavelength by taking charge
fluctuation and Landau damping variations into account. Moreover, when the perpendicular
component of the wavelength, when comparable to the ion gyroradius, a magnetic field aligned
electric field plays a significant role in the plasma acceleration/heating. Utilizing a two potential
theory along with kinetic description, the properties of kinetic Alfvén waves are aimed to inves-
tigate different modes in low beta plasmas by incorporating the streaming effects. We present
overview of electromagnetic KAW streaming instability in a collisionless dusty magnetoplasma,
whose constituents are the electrons, ions and negatively charged dust particles. The interaction
between monochromatic electron/ion beam with plasma is also discussed under various condi-
tions. Further, to calculate the linear dispersion relation for Weibel instability in unmagnetized
Lorentzian plasma, we shall employ linearized, nonrelativistic Vlasov equation.

2.1. Two potential theory

In a low beta plasma, β < 1, the electric field can be described by two potential theory or fields
expressing the electromagnetic perturbations with shear perturbations only in the magnetic
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field. We may neglect the electromagnetic wave compression along the direction of magnetic
field (B1z ¼ 0), which leads to the coupling of Alfvén-acoustic mode. Thus, we adopt a two
potential theory which represents both the transverse and parallel components of the electric
field as E⊥ ¼ �∇⊥φ and E∥ ¼ �∂ψ=∂z, with φ 6¼ ψ [23]. We shall also consider the charge on
the dust grain which may fluctuate according to the plasma conditions. At equilibrium, the
charge neutrality imposes the condition ne0 � ni0 þ Zd0nd0 ¼ 0, where ne0 ni0ð Þ is the electron
(ion) number density and Zd0 is the equilibrium dust charging state.

The linearized Poisson and Maxwell equations in terms of parallel and perpendicular opera-
tors can be expressed as

∇2
⊥φþ ∂2zψ ¼ 1

E0
ne1 þ Zd0nd1 þ nd0Zd1 � ni1ð Þ, (1)

and

∂z∇2
⊥ φ� ψð Þ ¼ μ0∂t Je1z þ Ji1z þ Jd1zð Þ, (2)

where E0 μ0

� �
is the permittivity (permeability) of the free space and Jj1z represents the field

aligned current density for jth species j ¼ eð for electrons, i for ions and d for dust grainsÞ. In
obtaining Eq. (2), we have ignored the factor ∇⊥∇zEz � ∇2E⊥: The main idea is to decouple the
compressional Alfvén mode under the assumption ∇� Eð Þz ¼ � ∂B=∂tð Þz ¼ 0, i.e., to highlight
bending of line of force and minimize any change in field strength due to wave compression.
Moreover, ∇� Eð Þz engross only E⊥ and the least restrictive assumption for ∇� Eð Þz to vanish
is E⊥ ¼ �∇⊥φ in which the perpendicular electric field E⊥ is electrostatic, leaving an incom-
pressible mode. When φ ¼ ψ, the twist of the magnetic field lines vanishes, therefore, the
incompressible shear modes have ∇:u⊥ ¼ 0 ¼ B1z, and E⊥ ¼ �∇⊥φ:

∂t þ v � ∇ð Þf j1 þ
qj
mj

Eþ v� Bð Þ:∇v f j0 ¼ 0, (3)

f j1 ¼
qjkzψ

mj ω� kzvzð Þ
∂f j0
∂vz

, (4)

where f j0 is the equilibrium distribution function. The dynamics of cold and magnetized dust

is governed by set of fluid equations, i.e.,

∂tvd ¼ Zde
md

EþVd �ωcd (5)

and

∂tnd þ div ndVdð Þ ¼ 0 (6)

2.2. Number density and current density perturbations

Here, we may define the number density and current density as
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nj1 ¼ n0

ð
f j1dv, j ¼ e, i, d

Jj1 ¼ qjn0

ð
vf j1dv,

(7)

3. Dispersion and damping of kinetic Alfvén waves (KAW)

Kinetic Alfvén waves (KAWs) are small scale dispersive Alfvén waves (AWs) which plays a
significant role in particle acceleration, turbulence, wave particle interaction and plasma heating.
Kinetic processes prevail in the regimes where plasma is dilute, multi-component, and non-
uniform. A coupling mechanism between small-scale KAWs and large-scale AWs with
superthermal plasma species which in turns gives rise to the excitation of KAWS in a solar/stellar
wind plasma has proved dispersive Alfvén waves responsible for the solar wind turbulence
especially when the turbulence cascade of these electromagnetic waves transfer from larger to
smaller scale as compared to proton gyro radius. Moreover, from spacecraft observations in
ionospheric plasma, it is evident that Alfvénic Poynting flux is responsible to transfer the energy
for particle acceleration. All the energized auroral particles accelerate in ionosphere, initiate Joule
heating phenomenon and stream out into the magnetosphere [25–28].

There are number of studies to show the relationship between the growth rates of excited
anisotropic KAWs and perpendicular wavelength by taking charge fluctuation and Landau
damping variations into account. Moreover, the perpendicular component of wavelength,
when comparable to ion gyroradius, a magnetic field aligned electric field plays a significant
role in plasma acceleration/heating.

One of the important features in astrophysical plasma is the transportation of electromagnetic
energy through the wave interaction with thermal plasma ions [29–31]. The KAW plays a vital
role to transfer the wave energy through Landau damping (when thermal electrons travel
along the magnetic field lines), which is regarded as collisionless damping of low-frequency
waves and during this process the particles gain kinetic energy from the wave. This process
can only happen when the distribution function has a negative slope which results in the
heating of plasmas or acceleration of electrons along the magnetic field direction [24]. Recent
studies also suggest the impact of non-Maxwellian distribution functions on the dynamics of
solar wind and auroral plasma [32]. This study shows that the plateau formation in the parallel
electron distribution functions minimize the Landau damping rate significantly.

In this chapter, the properties of kinetic Alfvén waves would be discussed by employing two
potential theory, Maxwell equations and Vlasov model to study different plasma modes and
by taking streaming of charged particles along and across the field direction in a Maxwellian
and Lorentzian plasma.

3.1. Kinetic Alfvén waves in Maxwellian plasma

The propagation of kinetic Alfvén waves in a dusty plasma with finite Larmor radius effects
will be discussed using a fluid-kinetic formulation by taking charge variations of dust
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particles. The coupling of Alfvén-acoustic mode results in the formations of kinetic Alfvén
wave which would be discussed in forth coming subsections. In a magnetized plasma, we shall
consider the electrons are thermal and strongly magnetized obeying an equilibrium Maxwel-
lian distribution, while ions are hot and magnetized so that finite Larmor radius can be taken
into account. For ions, we may employ Vlasov equation by utilizing guiding center approach
to obtain the perturbed distribution function for an electromagnetic wave when the electric
field and the wave vector k lie in the xz plane and, B0 ¼ 0; 0;B0ð Þ, k ¼ k⊥; 0; kzð Þ,

f i1 ¼ � ni0e
Ti

� �X
l

X
n

kzvzψþ nΩciφ
ω� nΩci � kzvz

exp i n� lð Þθð ÞJn
k⊥v⊥
Ωci

� �
Jl

k⊥v⊥
Ωci

� �
f i0, (8)

where Jn is the Bessel function of first kind, having order n and f i0 is the equilibrium distribu-
tion function. On using Eq. (7), we obtain the modified number and current densities for hot
and magnetized ions and thermal electrons, i.e.,

ni1 ¼ � eni0
kzmiv2ti

X
n

kzvtiψ 1þ ξinZ ξinð Þð Þ þ nΩciφZ ξinð Þ½ �In ϑið Þe�ϑi , (9)

Ji1z ¼ � ni0e2

Tikz

X
n

1þ ξinZ ξinð Þð Þ kzvtiξinψþ nΩciφð Þ½ �In ϑið Þe�ϑi , (10)

and

ne1 ¼ ene0
Te

ψ 1þ ξeZ ξeð Þ,ð (11)

Je1 ¼
e2ne0ψ
mevte

ξeZ
0
ξeð Þ, (12)

where In is the modified Bessel function with argument ϑi, e ¼ k⊥v2ti, e=2Ωci, e and Z ξinð Þ is the

usual dispersion function for a Maxwellian plasma with ξin ¼ ω� nΩcið Þ=kzvti and Z
0
is the

derivative of Z with respect to its argument.

The dust component is considered to be cold and unmagnetized such that ω << ωcj,

kzvte >> ω and kzvti << ω, therefore, we use hydrodynamical model with momentum balance
equation and continuity equation For cold and unmagnetized dust and thus we obtain

nd1 ¼ � nd0Zd0e
mdω2 k2⊥φþ k2zψ

� �
, (13)

and

Jd1z ¼
nd0Q2

d0

mdω
kzψ: (14)

To find the relation between φ and ψ, the expressions of ne1, ni1 and nd1 are used into Eq. (1)
and Ji1z, Je1z, and Jd1z into Eq. (2) to obtain the following coupled equations:
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Aφþ Bψ ¼ 0,

CφþDψ ¼ 0,
(15)

The coefficients in Eq. (15) are given by

A ¼ k⊥Ϝ i

ω2 ω0 1� 3
4
ϑi

� �
,

B ¼ λ�2
De � k2zω

2
pd

� 	
=ω2,

C ¼ c2k2zk
2
⊥,

D ¼ 1
kz

2ω2

λ2
De

� kzε⊥,

(16)

where Ϝ i ¼ ω2
pi=ω

2
ci, ω0 ¼ ω2 �Ω2

dlhð Þi, ε⊥ ¼ ω2
pd þ c2k2⊥ and Ω2

dlhð Þi ¼ ω2
pd=Ϝ i. The solution of

homogeneous Eq. (15) in the form of a biquadratic equation, i.e.,

pω4 þQω2 þ R ¼ 0 (17)

where,

p ¼ 2ω2
pe

kzv2te
,

Q ¼ �
2ω2

pd

kzv2te
Ω2

dlhð Þi � kzE⊥ � kzv2Ai
λ2
De

1þ 3
4
ϑi

� �
,

R ¼ Ω2
dlhð ÞikzE⊥ þ k3zv

2
Aiω

2
pd 1þ 3

4
ϑi

� �
(18)

where VAi ¼ cωci=ωpi is the Alfvén velocity of ions. The solution of biquadratic equation in the
form of kinetic Alfvén wave is as follows,

ω2 ¼ Ω2
dlhð Þi þ k2zV

2
Ai 1þ 3

4
þ T0Λi

E⊥
c2k2⊥

( )
ϑi;

" #
(19)

where, T0 ¼ Te
Ti
: and Λi ¼ ni0=ne0 This shows the dispersion relation of kinetic Alfvén waves in

the presence of mobile dust that are the extension of shear Alfvén waves in the range of small
perpendicular wavelength. The first term on the R. H. S appears due to dust dynamics, i.e., a
new cut off frequency due to the hybrid dynamics of cold dust and magnetized ions which
provides a limit to the propagation of electromagnetic wave. In a dustless plasma, i.e., ωpd ¼ 0,
we obtain usual dispersion relation in electron-ion plasma. Expressing ω in terms of real and
imaginary part, ω ¼ ωr þ iγ, with ωr >> γ, we either obtain growth or damping of KAW
satisfying the condition, ω=kz ¼ vA ≤ vz through wave particle interactions [33, 34]. In a dusty
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plasma with dust charge fluctuation effect, the main mechanism of wave damping is associ-
ated with dust charge fluctuation effects as compared to Landau damping [34]. It is a well-
known fact that if the particle thermal velocity exceeds the Alfvén velocity, then the particles
interact with Alfvén wave as the result of wave particle interaction/resonance, the linear
Landau damping prevails. In a dusty plasma, the massive dust grains move slowly as com-
pared to Alfvén velocity, therefore they may interact with Alfvén wave through linear Landau
damping (which is negligible in case of dust species) or charge fluctuation effects.

3.2. Lorentzian distribution function

A number of processes in a space based plasma lead to the development of particle anisotropy
through streaming or temperature and are responsible for plasma instabilities in collision-free
plasma which are frequently kinetic in nature and their persistent features have been confirmed
by many spacecraft measurements, e.g., the electron energy spectra and the near-earth environ-
ment observations have witnessed the presence of superthermal populations. It is a well-known
fact that the equilibrium Maxwell-Boltzmann distributions are associated with the Boltzmann
collision term, but on the large scale Fokker-Plankmodel is not appropriate due to strong interac-
tion and correlation in a collisionless plasma. The kinetic foundations of generalized Lorentzian
statistical mechanics has been remarkably established by [35] with the generalization of
Boltzmann collision term that is not based on binary collisions. The long range correlation
between particles vindicates that power law distributions posses a particular thermodynamical
equilibrium state. Themathematical form on isotropic Lorentzian distribution function is given by

f κj0 ¼ Aκ 1þ 1
κv2tjκ

v2z þ v⊥2� �" #�κ�1

;κ > 3=2, (20)

where Aκ ¼ ni0 1
πκv2tjκ

� �3
2

Γ κþ1ð Þ
Γ κ�1=2ð Þ

Due to the stated fact, the deviation from the Maxwellian equilibrium distribution function
could also excite plasma waves by using free energy sources. Such distributions are frequently
observed in solar and terrestrial environments and can be represented by anisotropy in tem-
perature and velocity, i.e., [36]

f jκ vz, v⊥ð Þ ¼ Aκ 1þ 1
κ

vz � v0ð Þ
v2tjκz

2

þ v⊥ � v0ð Þ2
v2tjκ⊥

 !" #�κ�1

, (21)

where v2tjκ ¼ 2κ�3
κ

� �
vtj, vtj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=mj

p� �
is the thermal speed of jth plasma component, the

number densities are represented by n and anisotropic temperatures components are
represented as moment of second order

Tz ¼ m
nckB

ð
f κv

2
zd

3v, T⊥ ¼ m
nckB

ð
f κv

2
⊥d

3v, (22)

In the limit κ ! ∞, the bi-Lorentzian function is reduced to bi-Maxwellian, f κ vð Þ ! f M vð Þ:
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3.3. Lorentzian current and number density perturbations

Many space and astrophysical plasmas have been found to have generalized Lorentzian particle
distribution functions. It is of some interest to observe the impact of the high energy tail on the
current and number densities of plasma species. By using Eqs. (4), (7) and (20), we get the
modified expressions of number and current densities based on kappa distribution function, i.e.,

nj1 ¼ � 2eψnj0
mjv2tjκ

κ0 þ ξj0Zκ ξj0
� �� �

, (23)

and

Jj1z ¼ � 2e2ψnj0
mjvtjκ

κ0ξj0 þ ξ2j0Z ξj0
� �h i

, (24)

where Zκ ξj0
� � ¼ 1

π1=2
Γ κþ1ð Þ

κ3=2Γ κ�1=2ð Þ
Ðþ∞
�∞

xdx
x�ξj0ð Þ 1þx2=κð Þκþ1 , is the plasma dispersion function and κ0 ¼

2κ� 1ð Þ=2κ:.

3.4. KAWand instability in Lorentzian plasma

In a low β plasma, the kinetic Alfvén wave instability driven by field aligned currents has
dependence on plasma β and streaming velocity of current carrying species which can be
responsible for particle energization. In this subsection, we extend the above scenario of
electromagnetic kinetic Alfvén wave by introducing the streaming of Lorentzian ions along
an external magnetic field B0ẑð Þ with constant ion drift velocity V0∥B0ð Þ, strongly magnetized
and hot electrons to be Maxwellian and cold unmagnetized dust. The plasma beta βe is
assumed to be very small. The electric field and the wave vector k lie in the xz plane, i.e.,
B0 ¼ 0; 0;B0ẑð Þ, V0 ¼ 0; 0;V0ẑð Þ, k ¼ k⊥x̂; 0; kzẑð Þ: We again solve the Vlasov equation For hot
and magnetized electrons [33] to get the number and current density of electrons as obtained
in the previous section. Making use of Eqs. (4), (7) and (21), we get the perturbed number
density of Lorentzian type streaming ions,

ni1 ¼ � 2eni0ψ
miv2tiκ

κ0 þ ηZκ ηð Þ½ �, (25)

The longitudinal components of current density perturbation [7, 19, 37] is given by

Ji1z ¼ � 2e2ni0ψ
mivtiκ

κ0ηþ η2Zκ ηð Þ� �
, (26)

where η ¼ ω� kzV0ð Þ=kzvtiκ:
By incorporating the values of ni1 and Ji1 in Eqs. (1), (2) and using (15), the dispersion relation
of KAW streaming instability in a Lorentzian dusty plasma is obtained as
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1þ 2ω2
pe

k2zv
2
te

δ1 þ
2ω2

pi

k2zv
2
tiκ

δ2 þ
ω2

pd

k2zc2
þ K � 1þ Kð Þ

ω2
pd

ω2 ¼ 0, (27)

where K ¼ k2⊥=k
2
z and

δ1 ¼
X
n

E⊥
nΩce

k2⊥c2kzvte
Z ξenð ÞIne�ϑe þ 1� ωvteξen

c2kz
þ nωΩce

k2⊥c2

 !
1þ ξenZ ξenð Þð ÞIne�ϑe

" #

δ2 ¼ 1� 2vtiκωη
c2kz

� �
1�

ω2
pd

ω2

 !
κ0 þ ηZκ ηð Þð Þ:

(28)

A visible modification can be noticed by the effect of superthermality via the kappa-modified
plasma dispersion function and the appearance of dust lower hybrid frequency due to dust
effects on the dispersion characteristics. Numerous standard wave modes can originate from
the above dispersion equation by applying particular limits, i.e.,

(i) k∥B0;V0ð Þ : For n ¼ 0, ϑe ≪ 1, a dispersion relation two stream instability (TSI) in
unmagnetized plasma is obtained [37], i.e.,

1þ 2ω2
pe

k2zv
2
te

1þ ξenZ ξenð Þð Þ þ
2ω2

pi

k2zv
2
tiκ

κ0 þ ηZκ ηð Þð Þ �
ω2

pd

ω2 ¼ 0: (29)

In the limit κ ! ∞, our results approach to its classical Maxwellian counterpart in a dustless
plasma environment [38].

(ii) k∥B0ð Þ, V0 ¼ 0, Ωci ≪ω≪Ωceð Þ : In a dustless plasma, we get whistler-like mode whose
frequency is below the electron cyclotron frequency, i.e.,

ω ¼ kzvph,

where vph ¼ c2kzΩce=ω2
pe is the phase velocity of whistler waves which is obviously not suscep-

tible to the Lorentzian index κ. Again, in the limiting case ω≪Ωce,ϑe ≪ 1, and expanding
plasma dispersion function Eq. (15) depicts the coupling of electromagnetic and electrostatic
mode, i.e., shear Alfvén-acoustic mode due to thermal kinetic effects due to which shear
Alfvén wave builds a longitudinal component, e.g.,

ω2 �Ω2
dlhð Þe

� 	
κ0

ω2
pi

kzv2tiκ
ω2 � ωkzV0
� �� kzE⊥

" #
� kzV2

Ae

λ2
Diκ

ω2 � k2zω
2
pdλ

2
Diκ

h i
¼ 0, (30)

where Ω2
dlhð Þe ¼ ω2

pd=Ϝ e, Ϝ e ¼ ω2
pe=Ω

2
ce, λDiκ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ti

4πni0e2
1
cκ

q
and cκ ¼ 2κ� 1ð Þ= 2κ� 3ð Þ: In the

limit ω2=k2zV
2
A ! 0, V0 ¼ 0, k2⊥r

2
e ≪ 1 we get the dispersion relation of Lorentzian dust-acoustic

waves, ω2 ¼ k2zC
2
D

� �
=cκ, where C2

D ¼ Zd0Ti=md and VAe ¼ B0= 4πne0með Þ1=2 is the electron
Alfvén speed with electron mass density. For a low beta plasma, the coupling between dust-
acoustic and shear Alfvén wave becomes weak and two modes would decouple. In the limit
κ ! ∞, we approach to a Maxwellian DAW [40]. It is worthy to mention here that due to the
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contribution of Lorentzian particles, the KAW instability suppresses. As a matter of fact, the
coupling mechanism enhances the unstable regions as the wave exchanges the energy, and we
can deduce that in case of generalized Lorentzian plasma, the coupling between two modes
becomes weak to some extent. Moreover for non-zero streaming velocity of ions, the unstable
regions tend to grow.After simplifying Eq. (30), we get themixed shear Alfvén-acousticmode, i.e.,

ω2 ¼ Ω2
dlhð Þe þ k2zV

2
Ae 1þ E⊥Λ�1

i r2e
c2cκ

� �
, (31)

where r2e ¼ Ti=meΩ
2
ce, and VAe ¼ cΩce=ωpe: In the limit βi ≪ 1 and for k2⊥r

2
e ≪ 1, the two modes

decouple and we get,

ω2 ¼ Ez
Ω2

dlhð Þe
ω2

pd
, (32)

where Ez ¼ ω2
pd þ k2zc

2 andΩ2
dlhð Þe ¼ ω2

pd=Ϝ e is the dust lower hybrid frequency which arises due

to the hybrid motion of magnetized electrons and unmagnetized dust grains and is referred as
a cutoff frequency which gives rise to a limit for the propagation of electromagnetic waves in
the presence of dust grains. For graphical representation, we have chosen parameters typical to
space dusty environment, for example, we consider ni0 ¼ 10� 104cm�3, nd0 ¼ 10� 10�2cm�3,
Zd0 ¼ 10� 104, md ¼ 105 � 108mi. For computational convenience, we introduce dimensionless

parameters which are as follows: ω ¼ Ωc ~ω, kz ¼ Ωc
~kz=VA, V0 ¼ VA ~V 0: It has been observed

that the growth rates of KAW instability are significantly affected by the presence of
superthermal population, i.e., instability suppresses due to energetic particles possessed by
kappa distribution when compared to its Maxwellian counterpart as shown in Figure 1.
Similarly, the effect of streaming velocity, dust number density and charge on the growth rates
is depicted in Figures 2–4 respectively. The free energy is associated with the drift motion of
ions along the field direction which is responsible for the excitation of KAW. In a streaming
plasma the velocity of ions is directly coupled to dust-acoustic waves and through this cou-
pling the maximum growth rate is obtained when the wave exchanges energy through the
streaming of ions. Moreover, the presence of dust particles has a noticeable effect on the wave
dynamics through dust charge Zd and number density nd, i.e., it modifies the wave propaga-
tion and excitation. We can observe that Zd and nd enhances the growth rates of KAW due to
the reason that when dust concentration in plasma is introduced they attach the plasma
electrons toward them and the electron loss rate increases which in particular enhances the
drift velocity to facilitate the unstable wave structure.

3.5. Dust kinetic Alfvén waves (DKAWs)

DKAWs arise when the dispersion relation of ordinary Alfvén waves is modified by the finite
Larmor radius effect of dust. This process is dominated by the collective dynamics of magnetized
dust particles. We have investigated shear Alfvén waves and their coupling with dust-acoustic
wave by considering magnetized dust and Lorentzian electrons and ions.

The perturbed current and number densities of cold and magnetized dust are obtained by
using Eqs. (5) and (6)
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nd1 ¼ � nd0Qd0

md

1
ω2 � ω2

cd
k2⊥φþ k2zψ

� �
=ω2

� �
(33)

The parallel component of perturbed dust current density turns out to be from Eq. (14)

Jd1z ¼ ω2
pd=ω

� 	
E0k2zψ and the dispersion relation of kinetic Alfvén wave in the presence of

magnetized dust is given by

Figure 1. Effect of κ on the imaginary part ~γ ¼ γ=ΩceÞð of the dispersion relation.

Figure 2. Effect of V0 on the imaginary part of dispersion relation.
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ω2 ¼ k2zV
2
DA 1þ E⊥r2d

c2cκ

� �
(34)

In the limit κ ! ∞, we obtain classical results in a Maxwellian plasma.

3.5.1. Lorentzian-type charging currents

The charging equation containing Lorentzian electron and ion currents is

Figure 3. Role of dust number density nd0 on the growth rates.

Figure 4. Role of dust charge Zd0 on the growth rates.
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∂Qd1

∂t
¼
X

Iκe1 þ Iκi1 (35)

where the electron and ion currents are calculated using a surface integral through the dust
grain surface of radius rd having potential φd are given as

Iκe1 ¼ �τ1 ξe0 κ0 þ ξe0Z ξe0ð Þð Þmeθe∥ þ 2eφdZκ ξe0ð Þ� �
, (36)

and

Iκi1 ¼ �τ2 ξi0 κ0 þ ξi0Z ξi0ð Þð Þmiθi∥ � 2eφdZκ ξi0ð Þ� �
, (37)

where τ1 ¼ a2dψ
� �

= 4miθi∥ λκ
Di

� �2κ0
� 	

, τ2 ¼ a2dψ
� �

= 4miθi∥ λκ
Di

� �2κ0
� 	

and λκ
e:i ¼ 1

cκ
Te, i

4πne, i0e2

� 	1
2
is the

Debye wavelength in superthermal plasma which is much smaller than found for a Maxwel-
lian plasma and has been shown by [39, 41] and ad is the radius of dust grain.

The Lorentzian charging currents are derived by using Vlasov-kinetic model whose fluid
version by Rubab and Murtaza [41] and in the limit κ ! ∞, our results matched with Das
et al., [32]. Now, by putting the value of perturbed dust grain charge, Qd1 ¼ � i

ωΩψ, in Eq. (1),
the dispersion equation of DKAW becomes,

ω2 ¼ k2zV
2
DA 1þ E⊥r2d

c2cκ
� iπnd0

a2d
k∥

� �
, (38)

which clearly shows that charge fluctuation effects are insensitive to the form of the distribu-
tion function.

3.5.2. Modified dust-acoustic wave

In the limit ω2=k2zV
2
A ! 0, the Eq. (16) after simplification turns out to be

ω2 ¼ c�1
κ k2zC

2
D

c�1
κ þ k2⊥r

2
d þ�iπnd0

r2d
kz

� 	 , (39)

where r2d ¼ C2
D=ω

2
cd, CD ¼ Teff =md

� �1
2 and Teff ¼ nd0Z2

d Teni0 þ Tine0ð Þ=ni0neo: Eq. (39) is the dis-
persion relation of dust-acoustic wave in a magnetized plasma whose Maxwellian version
without dust charge fluctuation effects is given by Mahmood and Saleem [42]. It could be seen
that the component of dust velocity in the direction of magnetic field Vdzð Þ, which finally turns
out to be dust gyroradius, is responsible for the coupling of Lorentzian type DKAW with
DAW. When the dust-acoustic wave frequency is very large compared to the dust gyroradius,
then the dust is considered to be unmagnetized. In an unmagnetized plasma B0 ¼ 0ð Þ with
Td ¼ 0, we get the dispersion relation of Lorentzian dust-acoustic wave (without dust charge
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fluctuation effects) which is exactly equal as discussed by [40]. The effect of Lorentzian index
when growth rates are plotted as function of parallel and perpendicular wave number are
depicted through graphical representation in Figure 5 and Figure 6 and shows that Maxwel-
lian distribution functions are supportive to enhance the wave frequency.

Figure 5. Growth rates ~γ ¼ γ=ΩcdÞð as a function of kz for different values of κ ¼ 3, 5, 7.

Figure 6. Growth rates ~γ ¼ γ=ΩcdÞð as a function of k⊥ for different values of κ ¼ 3, 5, 7.
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3.5.3. DKAW: Perpendicular streaming

We consider an electromagnetic dust kinetic Alfvén wave streaming instability in a
collisionless electron-ion dusty magnetoplasma. The motion of DKAW is followed by consid-
ering thermal and magnetized Lorentzian electrons to be Maxwellian and Lorentzian ions
drifting across the external magnetic field B0∥ẑð Þ with a constant drift velocity V0x̂, i.e.,
V0⊥B0ð Þ: The dust is considered to be cold and magnetized ω≪ωcdð Þ and the charge on the
dust grain surface is taken to be constant. The wave vector associated with the electromagnetic
wave lies within xz plane

B0 ¼ 0; 0;B0ð Þ, V0 ¼ V0; 0; 0ð Þ, k ¼ k sinθ; 0; k cosθð Þ

where

kz ¼ k cosθ, k⊥ ¼ k sinθ

The distribution function of Lorentzian ions where ions are streaming perpendicular to the
field direction is given as,

f κi0 ¼ Aκ 1þ 1
κv2tiκ

v2z þ v⊥ � V0ð Þ2
� 	" #�κ�1

;κ > 3=2, (40)

ni1 ¼ � 2eψni0
miv2tiκ

κ0 þ η0Z η0ð Þ½ �: (41)

where η0 ¼ ω� k⊥V0ð Þk⊥vtiκ: As there are no ions along the field direction due to perpendicu-
lar streaming, therefore we may neglect the ions current density Ji1z ¼ 0: In the limit κ ! ∞,
our results reduce to Maxwellian distribution.

The dispersion relation with the aid of Eq. (15) is obtained by using Eqs. (23), (24), (33) and (41)
in Eqs. (1) and (2), i.e.,

1þ
2ω2

pi

k2zv
2
tiκ

κ
0 þ η

0
Zκ η

0
� 	� 	

χ
h i

þ 2ω2
pe

k2zv
2
teκ

κ0 þ ξe0Zκ ξe0ð Þð Þ þ ωvteκ
c2k3∥

ξ κ0 þ ξe0Zκ ξe0ð Þð Þ
" #

þ k2⊥
k2z

χ 1þ ϜDð Þ �
ω2

pd

ω2 ¼ 0,

(42)

which is the general dispersion relation of kinetic Alfvén waves in the presence of perpendic-
ular streaming ions and cold and magnetized dust. In the above equation, ϜD ¼ ω2

pd=ω
2
cd is

responsible for the magnetized dust part.

For parallel propagation and in the limit ω2
pd=c

2k2⊥ ≪ 1, ϜD ≪ 1, we get dispersion relation of

two stream instability (TSI) in an unmagnetized dusty plasma. In a dust free plasma

ω2
pd ¼ 0

� 	
, we get the classical well know relation of TSI, while in the absence of streaming

ions, i.e., V0 ¼ 0, we obtain the dispersion relation of dust kinetic Alfvén waves
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ω2 ¼ Ω2
dlhð Þd þ k2zV

2
AD 1þ E⊥r2d

c2cκ
Λd

� �
: (43)

where Ω2
dlhð Þd ¼ ωpi=ϜD, Λd ¼ nd0zd0=ne0 and rd ¼ CD=ωcd: In the limit k2⊥r

2
d ≪ 1, we obtain

modified shear Alfvén wave associated with the hybrid dynamics of the ions and magnetized
dust through Ω2

dlhð Þd which provides a cut-off for the EM wave propagation, i.e.,

ω2 ¼ Ω2
dlhð Þd 1þ λ2

i k
2
z

� �
(44)

where λi ¼ c=ωpi:

The dispersion relation for the DKAW instability is found to be dependent on the spectral index
κ which means Lorentzian plasma is able to support a number of unstable branches. Lorentzian
index is found to be more effective in large wave length limit as compared to small wavelength
where the tail of unstable region remains independent of κ. When a large number of dust grains
are introduced, it will enhance the loss rate of electrons by attachment on a dust grain surface
which reduces the wave activity. At the same time the electron loss rate increases the drift
velocity which in turns helps to excite the DKAWs and a further increase will help to stabilize
the system. Due to particular choice of equations which involves parallel current density, the ions
electromagnetic response cant not take part which limits the existence of ions Weibel instability.

By using the same parameters as above, we have plotted the growth rates as the function of
propagation vector for different values of kappa. We have seen that the cross-field streaming of
superthermal ions inhibit the growth rate of instability as shown in Figure 7. Similarly, βd is
found to support the unstable structure and the instability increases with the value of βd as
shown in Figure 8.

Figure 7. Growth rates ~γÞð for perpendicular streaming as a function of wave vector k for κ ¼ 3, 5, 15.
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4. Weibel instability in a Lorentzian plasma

The Weibel plasma instability has so many applications in astrophysical [43], and in laboratory
plasmas as well [44]. The generation of magnetic field can be explained in the domain of gamma
ray burst, galactic cosmic rays and supernovae [45, 48]. For the case of unmagnetized plasma, the
Weibel instability [20] has been widely discussed in relativistic and nonrelativistic regimes. In
1989, Yoon [46, 47] generalized his work by using relativistic bi-Maxwellian plasma. Later,
Schaerfer [48] have discussed this instability in relativistic regimes of plasma with arbitrary
distributions and presented comparison with his previous works which was based on bi-
Gaussian distribution functions. TheWeibel instability was investigated by Califano [49, 50] with
temperature anisotropy, produced by two counterstreaming electron populations. Davidson
probed the multi species Weibel instability for the charged beam and intense ions in plasma [51].

In our work, we have derived the analytical expressions and compared the results numerically
for the real and imaginary parts of the dielectric constant with the Maxwellian and kappa κð Þ
distributions under two conditions i.e., α ¼ ωΘ

kz ≫ 1 and ≪ 1.

By using kinetic model, the linear dispersion relation for Weibel instability in unmagnetized
plasma has been derived after solving the linearized, nonrelativistic Vlasov equation as below [52],

ω2 � c2k2 � ω2
pe þ πω2

pe
k
m

� � ð∞
�∞

m3dvz
ω� kvzð Þ

ð∞
0

v3⊥dv⊥ � ∂f 0κ
∂vz

� �
¼ 0, (45)

where f 0 is the distribution function and here we will discuss the different velocity distribu-
tions, i.e., Maxwellian distribution and κ� distribution functions.

Figure 8. Growth rates ~γÞð for perpendicular streaming as a function of wave vector k for βd ¼ 0:001, 0:003, and 0:005.
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To calculate Weibel instability in a Lorentzian plasma, we use Eq. (21), for zero streaming

velocity of particle, i.e., V0 ¼ 0 and using ∂f 0
∂vz

� 	
in Eq. (45), and performing perpendicular

integration, we are left with parallel integral which is called modified plasma dispersion
function for kappa distribution.

ω2 � c2k2 � ω2
pe 1� T⊥

Tz

� �
þ ω2

peffiffiffiffi
π

p T⊥

Tz

� �
Γ κð Þ

κ
1
2Γ κ� 1

2

� �
 !

αð Þ
ð∞
�∞

1þ x2
κ

� 	�κ

x� αð Þ dx ¼ 0, (46)

where x ¼ Θ�1
z vz, α ¼ ωΘz

kz and Θz,⊥ ¼ 2κ�3ð ÞTz,⊥
κm :

Applying same procedure as above and again using Plemelj’s formula,

ð∞
�∞

1þ x2
κ

� 	�κ

x� αð Þ dx ¼ P
ð∞
�∞

1þ x2
κ

� 	�κ

x� αð Þ dxþ iπ 1þ x2

κ

� ��κ

, (47)

the integration of principal part yields

P
ð∞
�∞

1þ x2
κ

� 	�κ

x� αð Þ dx ¼
ffiffiffiffi
π

p
κ1=2Γ κ� 1

2

� �
Γ κð Þ 1þ κΓ κ� 3

2

� �
Γ κ� 1

2

� �
 !

: (48)

The dispersion relation will be solved under two following conditions

For α > 1ð Þ:

ω4 � c2k2 þ ω2
pe

� 	
ω2 � ω2

pe
T⊥

Tz

� �
v2tzk

2
z

� � ¼ 0, (49)

which shows the real part of Weibel instability is insensitive to the value of Lorentzian index

and the imaginary part iπ 1þ α2

κ

� 	�κ
! 0:

For α < 1ð Þ :
The dispersion relation takes the form

ω2 � c2k2 � ω2
pe 1� T⊥

Tz

� �
þ ω2

peffiffiffiffi
π

p T⊥

Tz

� �
Γ κð Þ

κ
1
2Γ κ� 1

2

� �
 !

αð Þ
ð∞
�∞

1þ x2
κ

� 	�κ

x� αð Þ dx ¼ 0: (50)

Now, we define a new plasma dispersion function, i.e.,

Z∗
κ αð Þ ¼ 1ffiffiffiffi

π
p Γ κð Þ

κ
1
2Γ κ� 1

2

� �
 ! ð∞

�∞

1þ x2
κ

� 	�κ

x� αð Þ dx, (51)
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the corresponding dispersion relation can be expressed as

ω2 � c2k2 � ω2
pe 1� T⊥

Tz

� �
þ ω2

pe
T⊥

Tz

� �
αð ÞZ∗

κ αð Þ ¼ 0: (52)

We can Solve Z∗
κ αð Þ by taking κ an integer and assuming α < 1: So for κ ¼ 3, 5, 7 we get the

following three Z� functions respectively.

Z∗
3 αð Þ ¼ α �1:66� 0:370α2 � :……

� �þ ι 1:539� 1:539α2 þ ::………
� �

Z∗
5 αð Þ ¼ α �1:8� 0:48α2 � :……

� �þ ι 1:635� 1:635α2 þ………
� �

Z∗
7 αð Þ ¼ α �1:98� 0:59α2 � ::……

� �þ ι 1:732� 1:736α2 þ…………
� � (53)

So the three dispersion relations for the above three corresponding Z-functions are.

For κ ¼ 3, we get

c2k2 þ ω2
pe �

T⊥

Tz

� �
ω2

pe 1þ 1:66α2
� �� iω2

pe
T⊥

T∥

� �
1:539α ¼ 0

γ ¼ Imω ¼ � 0:649ð Þ kzvTz
ω2

pe

Tz

T⊥

� �
c2k2 þ ω2

pe 1� T⊥

Tz

� �� � (54)

Similarly, for κ ¼ 5 and 7 we obtain the followings

γ ¼ Imω ¼ � 0:7324ð Þ kzvTz
ω2

pe

Tz

T⊥

� �
c2k2 þ ω2

pe 1� T⊥

Tz

� �� �
(55)

and

γ ¼ Imω ¼ � 0:8152ð Þ kzvTz
ω2

pe

Tz

T⊥

� �
c2k2 þ ω2

pe 1� T⊥

Tz

� �� �
(56)

Using the Vlasov model, we have derived new dispersion relations based on κ� distribution
function in an unmagnetized plasma. The analytical expressions for the dielectric constant
have been obtained under two conditions i.e., α≫ 1ð Þ and α≪ 1ð Þ, which finally give real and
imaginary parts respectively. The real part if found to be insensitive to the value of Lorentzian
index while imaginary part shows strong dependence on κ: A graphical representation has
also been added for the comparison of non-Maxwellian distributions with that of the Maxwel-
lian. The imaginary parts of the dispersion relation obtained above have been plotted for
different values of κ� showing the variation of the normalized frequencies, i.e., Imω

ωpe
against

ck
ωpe

: Figure exhibits the comparison of the result of kappa distribution with that of the Maxwel-

lian. For small κ, the growth rate also reduces but on other hand on increasing the κ value,
the growth rate enhances and finally approaches the Maxwellian results which is shown in
Figure 9.
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5. Collisional Weibel instability with non-zero magnetic field

The dispersion relation of Weibel instability for transverse waves propagating parallel to
magnetic field is obtained as

ω2 � c2k2 � ω2
pe 1�Θ2

⊥

Θ2
z

 !
þ ω2

pe

kΘz

 !
ω� 1�Θ2

⊥

Θ2
z

 !
ω�Ωð Þ

 !
Z∗
κ αð Þ ¼ 0 (57)

where Θz,⊥ ¼ 2κ�3
κ

� � Tz,⊥
m taking the limit α > 1, we obtain

ω2 � c2k2 � ω2
pe

ω
ω�Ωð Þ þ ω2

pe 1� T2
⊥

T2
z

 !
k2v2Tz

ω�Ωð Þ2
 !

¼ 0 (58)

We notice that the final expression becomes independent of the spectral index κ:

However, for α small, the dispersion function Z∗
κ αð Þ is obtained by choosing specific values of κ:

For κ ¼ 5, 7 we get

Z∗
5 αð Þ ¼ α �1:86� 0:560α2 � :……

� �þ ι 1:73� 1:79α2 þ ::…
� �

Z∗
7 αð Þ ¼ α �2:05� 0:734α2 � ::……

� �þ ι 1:9� 1:92α2 þ…………
� � (59)

The imaginary ω therefore becomes

ω ¼ �i 0:79ð Þ kvTz
ω2

pe

 !
Tz

T⊥

� �
c2k2 � ω2

pe 1� T⊥

Tz

� �� �
∓ 1� Tz

T⊥

� �
Ω (60)

and

Figure 9. Growth rates of Weibel instability for κ ¼ 3, 5, 7 and the comparison of results with Maxwellian.
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ω ¼ �i 0:88ð Þ kvTz
ω2

pe

 !
Tz

T⊥

� �
c2k2 � ω2

pe 1� T⊥

Tz

� �� �
∓ 1� Tz

T⊥

� �
Ω (61)

for κ ¼ 5 and 7 respectively.

Considering

ω ¼ ωr þ i ωi þ νeð Þ

ω ¼ �i 0:79ð Þ kvTz
ω2

pe

 !
Tz

T⊥

� �
c2k2 � ω2

pe 1� T⊥

Tz

� �� �
∓ 1� Tz

T⊥

� �
Ω� νe (62)

and

ω ¼ �i 0:79ð Þ kvTz
ω2

pe

 !
Tz

T⊥

� �
c2k2 � ω2

pe 1� T⊥

Tz

� �� �
∓ 1� Tz

T⊥

� �
Ω� νe (63)

where

νe ¼ � 1
p
dp
dt

¼ � 1
p

ð∞
0

f κv⊥mevzdv (64)

It is obvious from the above relation that collision frequency for particles obeying kappa
distribution differs from that of Maxwellian distribution and is dependent on the value of
specie of choice j ¼ e, i. It is seen that collision frequency increases with j ¼ e, i and is less for
kappa distributed particles than that of the Maxwellian particles. It is therefore justified to use
appropriate collision frequency for such Kappa distributed particles.

6. Conclusion

In this chapter, we have described the electromagnetic waves and instabilities in a generalized
Lorentzian plasma including particle streaming and finite and anisotropic thermal spread. It
allows to grasp the practical understanding of a complex collisionless system in terms of
spectra, bulk relative motion and instabilities. In particular, we have focused on kinetic Alfvén
waves and instabilities in a dusty and Lorentzian plasma and several types of modes have
been identified under various conditions. We have reviewed the kinetic waves and Weibel
instabilities in a non-Maxwellian space and astrophysical plasmas by incorporating some basic
concepts of dusty environments. We have found that dispersion characteristics involving
kinetic Alfvén waves become significantly modified by superthermality effects and dust
plasma parameters. The coupling of magnetized dust to the waves due to cyclotron resonance
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is shown to play a vital role on the wave dynamics. Moreover, the dust grain charging yield
some additional plasma currents, which depends on the streaming velocity, Lorentzian index
and plasma beta. The Lorentzian index is found to either enhance or quench the electromag-
netic instabilities. The dust component is found to play an essential role in wave dynamics, i.e.,
introducing dust lower hybrid frequency when mobile dust particles are included in the
plasma. We have seen that the temperature anisotropy in the distribution function has no
effect on the wave characteristics, i.e., the employed model inhibits the temperature anisot-
ropy, but supports the velocity anisotropy. Moreover, a brief analysis on Weibel instabilities in
a non-Maxwellian plasma in is also presented.

Kinetic Alfvén turbulence are always present in the streaming solar wind near 1 AU and in situ
measurements have confirmed the presence of non-Maxwellian proton distribution function.
The present investigations show that the Lorentzian charged particle distributions in space
lead to a essentially new physical situation as compared to the plasma with equilibrium
distribution functions. Our results of the present analysis opens a new window of investiga-
tion to study various streaming and anisotropic modes in different plasma scenarios when
Lorentzian distribution function is employed.
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