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Abstract

The combination of proteins and polysaccharidespgudsntial to act as good emulsifiers
and stabilizers. The aim of this study was to eatauhe stability of the emulsion system
stabilized by whey protein isolate (WPI) (2-5 wt#)d xanthan gum (XG) (0.25 and 0.5
wt%). Furthermore, the influence of WPI-XG emulsgystem on the thermal stability of
incorporated astaxanthin under different storaggtratures (5, 25, 37, 55 and 70 °C) and
in vitro digestion were investigated. The emulsion systath thigher XG concentration
(0.5 wt%) exhibited the highest viscosity, emulsgiability, and creaming stability. The
WPI-XG stabilized emulsion exhibited higher stdbilof astaxanthin at lower storage
temperature (5, 25 and 37 °C) with 10-12% astaxandss during 15 days of storage.
During in vitro digestion, emulsion stabilized by WPI-XG demortstlainfluence on
droplet digestion process, significantly<(p05) lower lipid digestibility and lower
astaxanthin digestion (12.6%) in comparison to eioal stabilized by WPI alone. This
research study provides platform for designing ified food or beverage systems
incorporated with hydrophobic bioactive compounds lietter stability and delivery to

target sites.

Keywords: Whey protein isolate; xanthan gum; astéxa; emulsionjn vitro digestion
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1. Introduction

Emulsion-based delivery system is an effective eagn to improve the water solubility
and bioavailability of hydrophobic bioactive compaols (Liu et al., 2016). Proteins and
polysaccharides are the biopolymers commonly useenaulsifiers/stabilizers. Due to
amphiphilic character, proteins can strongly adsatloil-water interface and provide
electrostatic and/or steric repulsion force whiclevents droplet aggregation and
coalescence (Jain and Anal, 2018). On the othed,hpolysaccharides increase the
viscosity of aqueous phase and enhance the syatifilémulsion by inhibiting the droplets
movement, and hence are used as stabilizer/thiegeagents (Ozturk and McClements,

2016).

The interaction between proteins and polysaccharigea natural phenomenon of great
importance in food systems for stabilization oflaiolal systems, particularly emulsion-
based delivery systems (Anal et al., 2019). The lsoation of proteins and
polysaccharides under appropriate conditions (aumagon, protein-to-polysaccharide
ratio, pH, ionic strength, temperature) exhibitgraat improvement in emulsion stability
(Donald, 2008; Guzey and McClements, 2006). Thegaobymeric interactions, therefore,
combine the stabilizing effect of polysaccharidéhwthe emulsifying ability of protein in
the formulation of stable colloidal food formulat® The mechanism of emulsion
stabilization is based on polysaccharide absor@lmlity and interaction with the proteins.
Firstly, protein-polysaccharide complex is formagedo polysaccharides adsorption to
the surface of protein-coated droplet via the etstatic interactions between proteins and

polysaccharides (Qiu et al., 2015a). Secondly,emetand polysaccharides can stabilize
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emulsion without developing any attractive intei@ts$, for instance, proteins adsorb at
oil-water interface, while polysaccharides only nfpdhe viscosity of aqueous phase due

to their non-adsorbing nature (Bouyer et al., 2012)

Xanthan gum (XG) is a high molecular weight (1.516° to 5 x 16 g/mol) anionic
heteropolysaccharide produced by the microorgam{anthomonas campestris. XG is a
non-adsorbing polysaccharide which does not bingdrttein-stabilized droplet surfaces.
The addition of XG into oil-in-water emulsion immes the emulsion stability by
increasing the viscosity of aqueous phase andiatsty the mobility of oil droplets
(Khouryieh et al., 2015; Moschakis et al., 2005puiger et al. (2013), reported th@t
lactoglobulin stabilized emulsion in the presenteX@ exhibited the better efficacy in
comparison tg-lactoglobulin alone an@-lactoglobulin-gum arabic stabilized emulsion.
Park et al. (2018) investigated the effect of XGliadn on lipolysis andB-carotene
bioaccessibility of the rice starch-based filledifogel loaded witlf-carotene. The highest
rate and overall extent of lipid digestion was éxed by the hydrogel in the presence of
XG at the concentration of 1 and 2 wt%. Furthee Bioaccessiblity of-carotene was
observed to decrease with the increase in XG cdratem. It is, therefore, important to
understand the effect of XG on the behavior of emul during passage through the
gastrointestinal tract, which includes emulsiore fdipid digestion and the bioaccessibility

of encapsulated bioactive compounds.

Astaxanthin is a deep red color carotenoid syntieelseis metabolic product by several
microorganisms. Green alga#aematococcus pluvialis, is one of the main sources of
natural astaxanthin (Feng et al., 2018; Martinelg@so et al., 2017). The consumption of
astaxanthin presents a great deal of health bensticth as prevention of oxidative stress
and cardiovascular diseases (Martinez-Delgado.e®@17), due to which it is gaining

interest as a nutraceutical ingredient in the fiodtion of food products. However,
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astaxanthin has poor water solubility, low bioaaility and prone to degrade by exposure
to oxygen, heat and light (Taksima et al., 2015huksion-based delivery systems have
been used for improving solubility and bioavailékibf astaxanthin (Meor Mohd Affandi
et al., 2011; Ribeiro et al., 2005). Cod liver @l a source of omega-3 fatty acids,
especially eicosapentanoic acid (EPA) and docossmic acid (DHA) and vitamins A,
D and E (Calvano et al., 2008). Therefore, the keetr oil is used as an oil phase to
develop the delivery system for lipophilic bioaetivingredients to fortify the food

emulsions (Farvin et al., 2014).

To our knowledge, none of the study has reportedidhmulation of WPI-XG stabilized
emulsion system to encapsulate astaxanthin olem.eBhe main purpose of this study was
to investigate the effect of WPI-XG stabilized esioh system on the thermal stability and
in vitro digestion behavior of encapsulated astaxanthioregn extracted from microalgae

Haematococcus pluvialis.

2. Materials and methods

2.1 Materials

Haematococcus pluvialis astaxanthin oleoresin (10 wt% astaxanthin) washased from
Yunnan Alphy Biotech Co. Ltd, China. Cod liver (Engelvaer Norwegian) was acquired
from Piping Rock Health Products Co. Ltd, New YOdSA. Whey protein isolate (WPI)
was acquired from Club Protein Co. Ltd, Thailandn¥an gum (XG) was obtained from
Union Chemical 1986 Co. Ltd, Thailand. All othereahicals/reagents used were analytical

grade.

2.2 Preparation of wall materials
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Mixture of WPI and XG at different proportions wased as wall material to formulate oil-
in-water emulsion. Effects of varying XG concentras (0, 0.25 and 0.5 wt%) and WPI
concentrations (2, 3, 4 and 5 wt%) on the emulsi@mtosity, emulsion stability and
creaming index were studied. In each formulatioall waterial (mixture of WPI and XG)
was dispersed in distilled water and sodium az@de4( wt%) was added into the mixture
to inhibit microbial growth (Chityala et al., 2018)he mixture was continuously stirred at

100 rpm (VelpScientifica, Europe) for at least tblensure hydration.

2.3 Preparation of astaxanthin-loaded emulsions

The astaxanthin-loaded oil-in-water emulsion wasppred by following (Liu et al., 2016)

with slight modification. The oil phase was preghilgy dispersing 1 g of astaxanthin
oleoresin into 100 g of cod liver oil by magnetiarsng at 100 rpm for 2 h. The wall

material solution was used as an aqueous phi&aseoil phase was added into the wall
material solution and total solid content of eachuksion system was adjusted t015%
(w/w). Initially, coarse emulsions were preparedibgnding the mixture through a high-
speed blender (OTTO, BE-127/127A, Thailand) for & rat 2000 rpm. The coarse
emulsions were then passed through a high-predsomeogenizer (IKA Labor-pilot,

2000/4, Staufen, Germany) for three passes at 860tb form an oil-in-water emulsion.
The final emulsions were adjusted to pH 7 using H®I or 1 N NaOH. The emulsions
were then kept in a sterilized test tubes and dtaté + 1 °C in dark conditions to prevent

the degradation of astaxanthin by the effect dftli§amjidi et al., 2014a).

2.4 Emulsion stability, creaming index, and viscosity

The emulsion stability was measured by following thethod of Tamnak et al. (2016).
The emulsion (10 mL) was centrifuged at 2000 x gJomin at 4 °C. The emulsion

stability was calculated by using Eq. (2).
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Emulsion stability (%) = % %X 100 (2)
1

Where H is the initial height of fresh emulsion and i the height of emulsion after

centrifugation.

The creaming index was determined by using Eq.E&)ulsion (10 mL) was placed in
glass test tube with cap and stored at 25 + 1 P %odays. The height of the cream and

serum layer was measured.

Serum layer height

Creaming Index (%) = X 100 (2)

Total height of emulsion

Emulsion viscosity was measured following the mdtraescribed by Jain and Anal
(2018). The viscosity of emulsions was determingidgia Brookfield digital viscometer at
25 °C (DV-II + Pro Viscometer, Brookfield Enginaasyi Laboratories, Stoughton, USA).

Viscosity was measured within 24 h of preparatiod expressed in mPa.s.

The optimized emulsions with higher emulsion vistgosemulsion stability and lower
creaming index were selected for further charazaéion and classified as E1, E2, E3 and
E4 emulsion systems with varying concentration d&?I2, 3, 4 and 5 wt%, respectively)

and fixed concentration of XG (0.5 wt%).

2.5 Particle size and particle charge measur ement

The mean particle diameter (z-average), polydistyeirsdex (PDI) and zeta potential of
emulsions were determined by dynamic light scattetechnique using Zetasizer Nano ZS
(ZEN 3600, Malvern 220 Instrument Ltd., Malvern, kestershire, UK). Prior to analysis,
emulsion samples were diluted (100 times) with ilthst water to prevent multiple

scattering effects. All the measurements were @dwwut at 25 °C.

2.6 Microstructure
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Microscopic images of emulsion samples were studdg light microscope (Olympus
CX31, Tokyo, Japan) at 40x objective magnificatibreshly prepared emulsion sample
(50 pL) was dropped on a clear glass slide withoaerslip and observed under

microscope.

2.7 Effect of storage temperatures on thermal stability of the astaxanthin-loaded

emulsion

Astaxanthin-loaded emulsions were stored in darditmns at different temperatures (5
1,25+1,37+£1,55+1and 70 £ 1 °C) for theige: for 15 days. Emulsions were stored
in cold storage room (5 + 1 °C), room temperat@&e 1 °C) and hot air oven (37 + 1, 55
+1 and 70 + 1 °C) to maintain the different staragmperatures. The storage temperature
was monitored by calibrated digital thermometereffimal stability of astaxanthin was
evaluated in terms of change in color and astaxartbncentration in emulsions during
the storage period. The color measurement was rpeetb by following the method
reported by Davidov-Pardo et al. (2016) in the texri*, a*, b* color parameters of
CIELAB system using a colorimeter (Hunter Lab Spamtlorimeter, TC-P Il A, Tokyo

Denshoku Co., Ltd., Japan). The total color diffee AE) was calculated using following
Eq. (3).

AE =L = L) + (a* — a})? + (b* — b})? 3)

WherelL*, a*, b* are color coordinates measured at specific timé Lg, a*, b* are the

initial values of color coordinates measured imratly after emulsion preparation.

The concentration of astaxanthin in the emulsi@iesys was determined by following the
method of Khalid et al. (2017) with slight modifieans. The emulsions (50 pL) were

diluted in 4.95 mL of organic solvent (dichloromatie: methanol = 2:1, v/v) and then
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centrifuged at 4472 x g for 20 min. Astaxanthin wasasured from the supernatant using
UV-VIS spectrophotometer (Shimadzu, Kyoto, Japand& nm. The emulsion without

astaxanthin was used as a blank. A calibration ecuvas developed by dissolving the
astaxanthin standard in the organic solvent (drcmhethane: methanol = 2:1, v/v) in a
concentration range of 0 to 12 mg/E & 0.986). The stability of astaxanthin in emulsion

system was expressed as astaxanthin retentionv#gh was calculated by following Eq.

(4).

Astaxanthin retention (%) = c£ x 100 4)
0

Where C is the astaxanthin concentration at cedaynand G is the astaxanthin retention
at 0 day

According to Niamnuy et al. (2008), astaxanthinrdegtion rate was calculated following

fist-order kinetic model as shown in Eq. (5).

ln(c) = —kt (5)

Co

Where @ and C are astaxanthin concentrations (mg/mLha&t 0 and specific time t (day)

respectively; t is the storage time (day); k is tbymperature dependent rate constant (day
l).

The degradation rate (temperature dependent) wassurerd by using the Arrhenius

relationship (Eg. 6).
In(k) = In(4) — =2 (6)

where k is the astaxanthin degradation rate cohshais a preexponential factor, s the
activation energy; R is the universal gas consfar&145 J mot K™%); T is the absolute

temperature in Kelvin.
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2.8 In vitro digestion of astaxanthin-loaded emulsion

The astaxanthin-loaded emulsions were passed thramgin vitro digestion model
including the simulated mouth, stomach, and snmddistinal phases following the method

as described by Shrestha et al. (2018) with shgidification.

Initial stage: The initial emulsion system was comprised of xamt¢éhin-loaded WPI-XG
stabilized emulsion. The emulsion (10 mL) was tramed to a glass beaker and

maintained at a temperature of 37 °C in a watdr.bat

Smulated mouth phase: Simulated saliva fluid (SSF) was prepared by ngxD.1594 g

NaCl, 0.0202 g KCI, amylase (0.87% w/v) and 0.022ngcin into phosphate buffer
solution (PBS 10 mM, pH 7) to obtain final volume1®0 mL and the pH of SSF was
adjusted to 6.8. SSF (5 mL) was mixed to the ihigeulsion system (5 mL) and

maintained at 37 °C in a water bath for 5 min wiitinuous shaking at 100 rpm.

Smulated gastric phase: Simulated gastric fluid (SGF) was prepared byalgng 0.32
wt% pepsin and 0.2 wt% NacCl in 10 mM phosphatedyugblution (pH 2.5). SGF (10 mL)
was added to the resulted mixture from the simdlat@uth phase (10 mL). The mixture

was incubated at 37 °C for 2 h with a continuowsstg at 100 rpm in the water bath.

Smulated intestinal phase: Simulated intestinal fluid (SIF) contained 39 nkdHPO,, 150
mM NaCl and 30 mM CaGlThe resultant mixture from the gastric phase (20 mas
mixed with SIF (20 mL) followed by the addition bfle salt extract (5 mg/mL) and
pancreatin (1.6 mg/mL). The pH of the resulting tmig was adjusted at 7 and placed in a

water bath at 37 °C with continuous shaking for 2h.

Emulsion samples from each stage of thesitro digestion process were collected and

diluted (100 times) by respective buffer of eachedtion phase (without enzymes). The

10
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diluted emulsion samples were analyzed for meaticfadiameter (z-average), and zeta

potential by dynamic light scattering techniquengsZetasizer Nano ZS.

2.9 Determination of freefatty acid released

The degree of lipid digestion was determined imtexf free fatty acids (FFAS) released
within small intestine using titration method (Rinslom and Parkin, 2001). The intestinal
digesta (5 mL), acetone (10 mL) and 3 drops phdribgiein (1%, w/v) were mixed

together and titrated with 0.1 M NaOH. The volunidNaOH used to obtain the endpoint

was recorded. The amount of free fatty acid reléases calculated by using Eq. (7).

FFA (%) — (VNaOmeNaOHXMWoil) x 100 (7)

2XWoit

where Vnaon is the volume of NaOH required for titration (mlo;naoniS the molarity of
used NaOH; MW; is the molecular weight of oil (g mYl; W o is the initial weight of

oil.
2.10 Deter mination of astaxanthin digestion

The digestion of astaxanthin after passing througkitro digestion was measured by
following the method as described by Salvia-Trajgt al. (2013) with some modification.
Raw digesta (10 mL) was centrifuged (EBAS8S, Heft@ermany) at 716 x g for 60 min at
25 °C. After centrifugation, the supernatant camtej astaxanthin solubilized in mix
micelle was collected. A top layer of non-digest@dwas discarded from the micelle
fraction before analysis. The aliquots (5 mL) ofrrdigesta or micelle fraction were mixed
with 5 mL organic solvent (dichloromethane: metHan@:1, v/v) and centrifuged at 137 x
g for 10 min at 25 °C. The bottom layer which sdlabd astaxanthin was collected,
whereas the top layer was mixed again with orgadtvent (5 mL) and the same

procedure was followed. The bottom part of orgasotvent layer was mixed into the

11



252 previous one and the absorbance was measured at n@0 using UV-VIS
253  spectrophotometer (Shimadzu, Kyoto, Japan). Thestign of astaxanthin was calculated

254  using Eq. (8).

255  Astaxanthin digestion (%) = 100 X (CCM&) (8)

Raw digesta

256  Here Guicele is the astaxanthin concentration in micelles foactand Gaw digestaiS the

257  astaxanthin concentration in raw digesta
258  2.11 Statistical analysis

259  All experiments were performed in triplicates athe resulted were expressed as mean
260 values with standard deviation. Statistical testiasg carried out by using SPSS statistical
261  software (SPSS, 22.0). Analysis of variance (ANO\&AYl Tukey’s HSD test were carried

262  out to determine the significant differences (p.85) among the mean observations.
263 3. Resultsand discussion
264 3.1 Effect of WPI and XG on the physical stability of astaxanthin-loaded emulsion

265 The effects of different concentrations of WPI &(@ on viscosity, emulsion stability and

266  creaming index of astaxanthin-loaded emulsionsanmemarized in Tablel.
267  3.1.1 Viscosity

268 During 15 days of storage, the absence of XG, dondsstabilized by WPI (2-4 wt%)
269 alone had no significant effect on viscosity. M@ the emulsions stabilized by WPI
270  alone exhibited the lowest viscosity indicatingttheesence of XG had significant role in
271 the viscosity of emulsion (Chityala et al., 2018).each WPI concentration (2-5 wt%),
272 increase in XG concentration increased the visgagiemulsions significantly (p < 0.05)

273 which was due to the predominant thickening eftdcKG. This result indicates that the
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emulsion viscosity is proportional to the viscositiythe continuous phase (Khouryieh et
al., 2015). Similarly, Sun et al. (2007) reportesharp increase in an emulsion viscosity as

XG concentration exceeded 0.2 wt%.

3.1.2 Emulsion stability

The emulsion stabilized by WPI-alone exhibited lihvwest emulsion stability (6.67-7.22
%) whereas emulsions stabilized by WPI-XG mixtunati{ 0.5 wt% XG) exhibited the
highest emulsion stability (94.39-99.02 %). At e&¢R| concentration, emulsion stability
was increased with increase in XG concentratiomil8rly, Xu et al. (2017) also reported
an improvement in creaming stability of the emuisab pH 7 stabilized by hydrolyzed rice
glutelin in the presence of XG (0.4 wt%). Howewerthe absence of XG, WPI had no
significant effect on emulsion stability. XG plagise role in emulsion stability due to
following reasons: firstly, XG is a molecule witihgh molecular weight, charge density,
and rigidity and thus it may adsorbed to positieéches on the surface of protein-coated
droplets, leading to increases in the electrostatit steric repulsive force between droplets
(Protonotariou et al., 2013). Secondly, XG effeglyvincreases the viscosity of aqueous
solutions, which may prevent the movement of drisplleat causes creaming, even though

the droplets were flocculated (Chen et al., 2016).

3.1.3 Creaming index

The emulsions stabilized by WPI alone showed ramd the highest creaming index
(90.63-92.63 %). However, with the addition of 0286 XG, creaming index of emulsion
was significantly reduced (2.11-17.23 %) and nagneg was observed in emulsions in
the presence of 0.5 wt% XG (Table 1). This decr@aseeaming index in presence of XG
might be due to increase in viscosity that prevéiné mobility of oil droplets. Velez et al.

(2003) reported that the presence of polysacchari@ge ~ > 0.1 wt%) reduced the

13
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creaming rate of emulsion. Addition of non-adsogdmiopolymer at certain level increase
the continuous phase viscosity which limits theptlsts movement resulting a decrease in
creaming rate (McClements, 2015). It was obsertiat émulsion system with the highest
viscosity showed the highest emulsion stability &mel lowest creaming index (Table 1).
However, emulsion viscosity cannot be always linkedh emulsion stability. The
emulsion stability is further dependent on biopatymature and pH of emulsion system
(Owens et al., 2018). The stability of emulsionpat 7 attributes that at this pH both
protein and XG carried negative charge, thus agi@mups on XG adsorbed to cationic
patches on protein molecule, which provide thetedstatic and steric repulsion between
droplet surface (Qiu et al., 2015a). Furthermor&, provided the high viscosity within
continuous phase, which limited creaming instap{Xu et al., 2017). In the present study,
WPI stabilized emulsion in the presence of 0.5 W& remained stable with no sign of

creaming at 25 °C for one month (Fig. S1, suppleargmmaterial).

Finally, based on higher emulsion viscosity, enarisstability and lower creaming index
(Table 1), the astaxanthin-loaded WPI-XG emulsigstesns with varying concentration of
WPI (2, 3, 4 and 5 wt%) and fixed concentratiorX&f (0.5 wt%) were selected for further

particle characterization and classified as E1,BE®and E4 respectively.

3.2 Effect of WPI on the particle characteristics of astaxanthin-loaded WPI-XG

emulsions

The patrticle characteristics of WPI-XG emulsion&-E4) with varying concentrations of
WPI (2-5 wt%) and XG (0.5 wt%) were determined ([€ab). The mean particle diameter
of each WPI-XG emulsions systems was significadifferent (ranging from 1.71 to 2.85

pm). Further, it was observed to decrease signifiggp < 0.05) with the increase in WPI

14
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concentration. The smallest droplet size was etddbby WPI-XG emulsions system
containing higher (5 wt%) WPI concentration. SimyfaHuck-Iriart et al. (2013) reported
a decrease in volume-weighted mean diametgg, (B.47 to 0.41 pum) of emulsions with
the increase in sodium caseinate concentratior5MW2%) in the presence of XG (0.5

wit%).

Polydispersity index (PDI) indicates the width @rficle size distribution, which ranges
from O to 1. The lower PDI value (0.1-0.25) showeekatively narrow size distribution,
while the value of PDI more than 0.5 indicates ghhji broad distributiofTamjidi et al.,

2014a). The PDI value of all WPI-XG emulsion sysseaxceeded 0.25 indicating the
broad particle size distribution. However, the BE3uésion system (4% WPI + 0.5% XG)

exhibited significantly lower PDI value (0.26) inraparison to other emulsion systems.

Zeta potential exhibits the nature of the electtistpotential near the droplet surface. A
higher zeta potential indicates the greater elstdtir repulsion and separation distance
between droplets resulting in reduced flocculateoxd aggregation (Thaiphanit et al.,
2016). The zeta potential between -10 mV and +10 is\éonsidered nearly neutral,
whereas zeta potential value more than +30 mVss lean -30 mV are indicated strongly
cationic and anionic respectivglRizaj et al., 2016). Study of zeta potential of MX&
emulsion (E1-E4) showed that all emulsions systertept E3 exhibited more than -30
mV zeta potential. This indicates relatively highgative charge that generates strong
electrostatic repulsion preventing droplets coaase and flocculation (Jain and Anal,

2018).

The microscopic images obtained by light microscqpé&y. 1) indicated that the
flocculation occurred without phase separation he €3 and E4 WPI-XG emulsion

systems, while no flocculation was observed inWfl-XG emulsion systems E1 and E2.
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The microstructure, therefore, indicated that debfibcculation increased with increase in
WPI concentration. This result corroborates witbuits of zeta potential, such that E3 and
E4 emulsion system exhibited lower negative vallieaia potential and hence weak
electrostatic repulsion. Since, there was no sicanit difference in the zeta potential of E1
and E2 emulsion system, only the emulsion systemaBIselected for further evaluation

of the stability of astaxanthin ama vitro digestion behavior.

3.3 Effect of storage temperatures on thermal stability of the astaxanthin-loaded

emulsion

The thermal stability of astaxanthin was evaludtgdetermining the total color difference
(AE) and astaxanthin concentration during storagestéxanthin-loaded emulsions at
different temperature (5, 25, 37, 55 and 70 °C)lfordays. The changes in emulsion color
stored at different incubation temperature was achatging colorimeter to obtain the CIE
L*a*b* color coordinates throughout the storage peridie Tightness of the emulsion
gradually increased at lower incubation temperatuhde there was sharp increase in
lightness of emulsion incubated at higher tempeea(lrig. 2A). On the other hand,
redness and yellowness of the emulsion remainatively stable at the lowest incubation
temperatures (Fig. 2B and 2C respectively) andiestaro decrease gradually with the
increase in incubation time and temperature. Oidaif astaxanthin causes the reduction
in red and yellow color of astaxanthin. In additidhe product of oxidation is colorless
compounds, such as epoxides and hydroxyl compduiaainfuy et al., 2008). Besides the
color fading caused by the oxidation, Niamnuy e{2008) reported the change of color of
dried shrimp (the color belongs to astaxanthin ggthdue to astaxanthin isomerization
occurring simultaneously with the oxidation of aswathin. Moreover, higher total color
difference was observed at in the emulsion stotezlewated temperature (55 and 70 °C)

compared to emulsion incubated at lower temperafbir5 and 37 °C) indicating that
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color degradation is strongly dependent on stoteggerature (Fig. 2D). Similar result
was reported by Davidov-Pardo et al. (2016) who alestrated the effect of storage

temperature on the rate of color fading in lut@nxénthophyll class of carotenoids).

Further, the thermal stability of astaxanthin affedent storage temperatures was
determined in terms of the astaxanthin concentragonaining in emulsion and expressed
as astaxanthin retention (%) (Fig. 3). The iniéisdaxanthin retention (100%) was observed
to decrease with the increase in storage time emgerature. The stability of astaxanthin
was the highest in emulsion stored at 5 °C withy@%o loss after 15 days of storage.
Astaxanthin retention was lower for emulsions sloaé high temperature (55 and 70 °C)
compared to low temperature (5, 25 and 37 °C).»&stthin retention profile followed a

similar trend with previous studies which reporfadter astaxanthin degradation during
storage at elevated temperatures (Davidov-Parah,e2016; Liu et al., 2016; Shrestha et
al., 2018). An increase in astaxanthin degradadtdmgh temperatures might be due to the
effect of heat causing an acceleration of a collisof astaxanthin-loaded emulsified

droplets with pro-oxidant, resulting in the stinfida of rate of oxidation reaction (Tamjidi

et al., 2014b).

The degradation of astaxanthin concentration wésmated by following the first-order
Kinetic reaction as demonstrated by previous stuflBistamante et al., 2016; (Bustos-
garza et al.,, 2013) (Vakarelova et al., 2017). @aBlrepresents the degradation rate
constant (day) and activation energy of reduction in astaxanthitme astaxanthin
degradation constant rate was found to increade tlvé increase in storage temperature.
There was no significant difference (p > 0.05)he astaxanthin degradation constant rate
for 5 °C (0.68 day) and 25 °C (0.99 d&y, while it was significantly higher for 37 °C
(1.33day’), 55 °C (4.72day") and 70 °C (7.90 d&y. The activation energy was 31.55 KJ

mol™* which was higher than the activation energy obcéading.
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3.4 1nvitro digestion of astaxanthin-loaded emulsion

3.4.1 Droplet size

Initially, the mean droplet diameter was 1.53 an892um for emulsions stabilized by
WPIl-only and WPI-XG respectively (Fig. 4A). Aftendubation in SSF, there was
significant (p < 0.05) increase in the mean pastdibmeter of emulsion stabilized by WPI
alone (2.24 um). An increased in droplet size cddddue to the presence of mucin and
mineral ions in the simulated saliva fluid suchtthaucin, a charged glycoprotein which
can promote bridging and/or depletion flocculat(@iu et al., 2015a), and mineral ions
can impact on surface electrostatic effects (Qialgt2015b). Conversely, there were no
significant changes in the mean particle diametew®I-XG stabilized emulsion. This

indicated that the addition of XG could preventaletd flocculation in the mouth phase.

The particle size of both emulsion systems was ifstgntly increased after passing
through the simulated gastric conditions. An insezhin the mean droplet diameter could
be due to various physicochemical mechanisms inwudi) the highly ionic strength
within gastric fluid decreased the electrostatiputsion between droplets surfaced, (i)
hydrolysis of protein by pepsin could decrease stadbility of droplet from aggregation
(Golding et al., 2011), (iii) some of protein-coditdroplets might be replaced by other

surface molecules present in the system (Qiu e2@L5a).

After incubation in SIF, the increase in dropletrdeter was observed for both emulsion
systems. This increase in droplet size might betduroplet aggregation and coalescence,
caused by the digestion of oil phase and displanewielipid digestion products such as
free fatty acids, monoacylglycerols and diacylghpte due to the action of pancreatin (Xu
et al., 2014). On the other hand, the mean drgetof emulsion stabilized by WPI-alone

(6.67 um) was significantly (p< 0.05) larger thanuision stabilized by WPI-XG (5.26
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pum). The small droplet size in emulsion with WPI-X@ght be attributed to the presence
of XG, that can potentially prevent the formatidritte large particles after digestion (Qiu

et al., 2015a).

3.4.2 Zeta potential

Zeta potential exhibits the electrical charactarist emulsified droplets and indicates the
changes in the interfacial composition of the emulsfter passing through each stage of
digestion. At initial stage zeta potential of WiRDaWPI-XG stabilized emulsion was -32.8
and -34.9 mV respectively (Fig. 4B). After passthgough simulated mouth conditions,
both emulsion system exhibited anionic zeta podémdicating no variation on interfacial
composition in consistent with the droplet size.e®sulsions were incubated in SGF, the
magnitude of zeta potential of both emulsions cledrappreciably to positive charge. This
change in zeta potential might be due to pH of ®@iRg lower than the isoelectric point
of WPI (pl = 4.5), which in turn reduced anionicacje of XG by increasing cationic
charge of WPI, or may be due to replacement ofrmlgemulsifier by the action of pepsin

digested WPI (Shrestha et al., 2018).

Finally, on passing from gastric to small intestiphase, the zeta potential was -10.0 mV
for WPI emulsion and -24.9 mV for WPI-XG stabilizeshulsion. The decline in zeta
potential might be due to the fact that some of Vu®dted droplets were digested by
pepsin or displaced by lipid digestion productswedwer, the emulsion stabilized by WPI-
XG exhibited significantly higher negative chargdicating the presence of XG on coated

droplets (Xu et al., 2014).

3.4.3 Free fatty acid released

The rate of free fatty acids released was signifigadifferent (p<0.05) by the emulsion

systems stabilized by WPI-alone and WPI-XG (Fig).4khere was initially a rapid release

19



444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

of free fatty acids from both emulsion systems miyirihe first 20 min, followed by an
almost constant release of free fatty acids aloitly the digestion time. However, the rate
of free fatty acids released was higher in emulstabilized by WPI alone compared to
WPI-XG stabilized emulsion during the first 20 naihdigestion till at the end of digestion
time (120 min). This indicated that the presenceX@ impacts on the fat digestion.
Similarly, Espert et al. (2019) found a reducti@8%) in the amount of free fatty acids
released from cream containing XG as comparisoncteam without XG. The
incorporation of XG may inhibit the lipid digestiday restricting the access of bile salt and

lipase to react efficiently at the lipid dropletrface.

3.4.4 Digestion of astaxanthin

Finally, the influence of emulsion stabilized by A#fone and WPI-XG emulsion system
on the solubilization of astaxanthin in the micgllgase was examined (Fig. 5). After the
final stage ofin vitro digestion, the digesta was collected and cenedughree layers
were developed after centrifugation, including th@tom sediment phase, the middle
micelle phase, and the upper oil phase. The migtiase was yellowish-orange and
optically transparent which suggested that astéwwantas solubilized in small mixed
micelles. The extent of released astaxanthin wa®%end 12.6% from emulsion with
WPI alone and WPI-XG stabilized emulsion. A simitasult was reported by Xu et al.
(2014) who reported 45.5% and 23.0%petarotene was observed to be released from
emulsion stabilized by WPI and the mixture of WRREbpectin, respectively, into water-

soluble mixed micelles.

There was consistency between the extent of frigée d&id formation and the amount of
astaxanthin released. The lower astaxanthin refeaseemulsion containing XG might be

due to the fact that presence of XG limited theeas®f bile salt and lipase to react at lipid
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droplet surface, thus inhibited the formation otetlies and astaxanthin still remained in
non-digested droplets, as a consequent decreasedottbility of astaxanthin into the

aqueous phase (Zhang et al., 2015), secondly titengi of XG to the released astaxanthin
might result in the formation of a dense molecalamplex (Yonekura and Nagao, 2007;

Mun et al., 2016).

4. Conclusion

Astaxanthin-loaded oil-in-water emulsion was siabd by WPI and XG. The addition of
XG significantly increased emulsion stability inngparison to emulsions stabilized by
WPI alone. No creaming was observed in the WPI-Xtilsions containing 0.5 wt% XG.
The astaxanthin encapsulated WPI-XG emulsion systeas more stable at low
temperature of storage (5, 25 and 37 °C). Dunmngtro digestion, emulsion stabilized by
WPI-XG exhibited the smaller droplet size withinsg& and intestinal phase indicating
the addition of XG can improve the stability of f@im-stabilized emulsion. The presence
of XG in combination with WPI demonstrated lowepidi digestibility and limited the
content of released free fatty acid. Further, tbenlwnation of WPI-XG reduced the
digestion and released of astaxanthin in compatig@mulsion system stabilized by WPI
alone. This study signifies the application of emwmital and easily accessible
biopolymers, i.e. WPI and XG in the formulationastaxanthin enriched stable emulsions
for food and feed applications. The provided resalte useful for designing functional
foods (such as mayonnaise, sauce, gravy, and shlksbing) fortified with health-

promoting ingredient.
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Figure Captions

Fig. 1. Microscopic images of astaxanthin-loaded emutsicontaining 0.5 wt% XG with
different WPI concentration (magnification 40x);1{E2 wt% WPI + 0.5 wt% XG; (E2) 3
wt% WPI + 0.5 wt% XG; (E3) 4 wt% WPI + 0.5 wt% X@&4) 5 wt% WPI + 0.5 wt%

XG

Fig. 2. Effect of the storage temperature on the ligtgr§es) (A); rednessd*) (B);
yellownessI§*) (C); total color AE) (D) of the astaxanthin-loaded emulsion incubaited

different temperatures.

Fig. 3. Effect of storage temperature on astaxanthimtiete of the astaxanthin-loaded

emulsion incubated at different temperatures.

Fig. 4. Changes in droplet properties: the mean pard@deneter (A); zeta-potential (B)
throughout thein vitro digestion model; and free fatty acids (FFA %) askd in the
intestine phase (C) of the emulsions stabilizedWiyl and WPI-XG. Different capital
letters (A-C) indicate significant differences (p 005) in the mean particle size (z-
average) when samples were compared between diffeigges oin vitro digestion (same
emulsion system). Different lowercase letters (add)icate significant differences (p <

0.05) between emulsion systems (within sam@tro digestion stage).

Fig. 5. Effect of WPI and WPI-XG stabilized emulsions ¢ tdigestion of astaxanthin.
Different lowercase letters (a, b) indicate sigrdfit differences (p < 0.05) in the

astaxanthin digestion between emulsion systems @N&MWPI-XG stabilized emulsion).
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700 Table 1 Effect of WPI and XG on emulsion viscosity, stdiiland creaming index of

701 WPI-XG stabilized emulsion

Composition (% wt) Viscosity Emulsion stability Creaming index
WPI XG Qil (mPa.} (%) (%)

2 0 13.0 5.55+0.24 7.22+1.74 91.58 + 0.42
0.25 12.75 186.13+0.98  94.97 +0.3% 17.23 £ 0.47
0.5 12.5 582.2 + 0.72 99.02 + 0.38 0.00 + 0.6

3 0 12.0 5.80 + 0.23 6.11 +0.48 90.63 + 0.78
0.25 11.75 186.03+1.53 92.87 +2.2¢ 5.61+1.61
0.5 11.5 583.1+0.50  96.86 + 1.08 0.00 + 0.6

4 0 11.0 6.97 + 0.2 5.83 +0.84 92.14 +0.32
0.25 11.75 192.93+1.95 9513 +1.6% 4.38 £ 0.80
0.5 115  584.0+0.92 97.19 + 0.5% 0.00 + 0.6

5 0 10.0 12.22 +0.49 6.67 +0.84 92.63 + 0.53
0.25 9.75 218.40+0.82 89.61+1.83 2.11+1.08
0.5 9.5 586.4+0.53  94.39+1.7% 0.00 + 0.6

702  Different superscript letters (a-g) indicate sigraht differences (p < 0.05) within the

703  column
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Table 2 Particle size, polydispersity index (PDI) and zptdential of astaxanthin-loaded

emulsions containing 0.5 wt% XG at different WPhcentration

Emulsion Composition (wt%)

Mean patrticle

Polydispersity Zeta potential

systems diameter (um) index (mV)

El 2% WPl + 0.5% XG 2.85+0.32 0.33+0.04 -349+1.31
E2 3% WPI + 0.5% XG 2.53+0.16 0.43+0.04 -36.2+0.29
E3 4% WPI + 0.5% XG 2.09 +0.067 0.26 +0.08 -28.2+0.34
E4 5% WPI + 0.5% XG 1.71 + 0.67 0.43+0.14 -30.6+0.59

Different superscript letters (a-d) indicate thgndicant differences (p < 0.05) in the same

column.
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Table 3 Astaxanthin degradation rate constant of emulsadmifferent storage

temperatures
Storage First-order degradation k xtqday') R? Activation

temperature energy
(°C) (kJ/mol)
5 C = 0.456 [-exp (0.0068) {] 088 001 31.55

25 C = 0.456 [-exp (0.0099) {] 039  0.90

37 C = 0.456 [-exp (0.0133) {] 133 093

55 C = 0.456 [-exp (0.0472) {] 452 097

70 C = 0.456 [-exp (0.079) {] 7.90 0.98

C is Concentration of astaxanthin (mg/mL), k is delgtion rate constant’i&s square of
correlation coefficient. Different superscript &t (a-d) indicate the significant (p < 0.05)

differences among degradation rate constant (k).
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Highlights

» Oil-in-water emulsions with whey protein isolate NY as wall material and xanthan
gum (XG, 0.5%) showed better stability

» WPI-XG stabilized emulsions showed higher stabibifyastaxanthin at lower storage
temperature (5-37 °C) for 15 days

* Invitro digestibility of astaxanthin was lower in WPI-XG alsion system as compared

to WPI emulsion system (control)



